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FROM THE PRESIDENT 

Congratulations and Thanks  
The CMA congratulates Mike 
Newman, a life member of the 
Canberra Mathematical Association 
and an active member since the 
inception of the CMA, on his 
appointment as Professor of 
Mathematics at the Australian 
National University. 

Mike and Laci Kovacs founded the 
Friday enrichment evenings for 
senior seconday students nearly 30 
years ago.  Mike continues to play 
an active role as codirector of the 
Canberra Mathematics Enrichment 
Program. 

The CMA wishes to formally thank 
Mike and Laci on behalf of the many 
teachers and students who have 
benefited from their extensive 
leadership and practical support for 
mathematics education in ACT 
schools.  The CMA wishes Mike 
success and enjoyment in his new 
role. 

The University of Canberra 
Maths Day, Friday 30 May 1997 
The University of Canberra (UCAN) 
Maths Day was the sixteenth such 
“fun day” for Year 12 students from 
the ACT and surrounding regions. 
Forty schools, including a couple 
from Sydney, participated at the 
Sports Centre at the University. 

Many thanks to the staff from the 
UCAN Information Science and 
Engineering faculty, who with 

administration staff from the 
Australian Mathematics Trust, 
planned and coordinated this very 
enjoyable day.  Their hospitality was 
appreciated by teachers responsible 
for school teams. The new Head of 
the Faculty, Professor Robert 
Bartnick, took the opportunity to see 
the Maths Day in action and to speak 
with teachers and students. 

The final event, the relay, remains a 
favourite with students and teachers. 

Prizes were presented to: 

University of Canberra Maths Day Trophy 
 Sydney Tech High School 

UCAN Country Schools Shield 
 Shoalhaven High School 

UCAN Capital Cities School Shield 
 Merici College 

Certificates for the Poster Competition 
 Moruya High School 
 Wellington High School 
 Canberra College, Weston 

FROM THE PUBLISHING TEAM 

Third term is well under way and 
here we are with issue number three.  
The publishing team is pleased with 
the diversity of contributions so far 
this year in terms of topics covered 
and the educational sectors spanned 
by the writers.  Remember that 
Circuit is your journal and that we 
welcome all contributions, including 
letters to the editor.  Contributions 
for our final issue for the year should 
be received by mid October. 
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Numeracy - A Hot Topic on the 
Political Agenda 

Why the debate about ‘numeracy’? 
The various costly national, state and 
territory initiatives in mathematics 
education since the Hobart declaration in 
1988 and the national mappings in 
mathematics in 1989 do not appear to have 
come to grips with describing ‘numeracy’ 
in a way that supports the practical work of 
teachers and students’ understanding and 
learning of mathematics.   

The mathematics statements and profiles, 
and the national benchmarks and standards 
currently being developed, provide 
extensive and detailed information about 
aspects of students’ mathematical learning.  
However, the information is not 
sufficiently focused and succinct to 
facilitate students’ mathematical learning, 
teachers’ instruction and assessment 
planning, and parental and community 
understanding of what mathematical 
competence and numeracy look like in 
practice.  It is difficult to envisage how 
teachers, students, parents and the wider 
community will cope with the amount of 
information available. 

How has numeracy been described? 
Sue Willis argues that the Crowther Report 
in the UK (1959) originally introduced the 
concept of numeracy, and the word itself.  
It defined numeracy as “a word to 
represent the mirror image of literacy”.  
On the one hand, it is necessary to have an 
understanding of the scientific approach to 
the study of phenomena - observation, 
hypothesis, experiment, verification.  On 
the other hand there is the need in the 
modern world to think quantitatively, to 
realise how far our problems are problems 
of degree even when they appear to be 
problems of kind.   

The USA ‘back-to-basic’ movement 
(1960s) policy documentation on 

numeracy had as the first in the list of 
mathematical requirements:     

“The ability to perform with reasonable 
accuracy the computations of addition, 
subtraction, multiplication and division 
using natural numbers, fractions, decimals 
and integers”. 

The Education Department of WA (1977) 
declared that the term ‘numerate’ is 
understood to mean mathematical literacy.   
A person is considered to be literate and 
numerate when he has acquired the skills 
and concepts which enable him to function 
effectively in his group and community, 
and when his attainment in reading, 
writing and mathematics make it possible 
for him to continue to use these skills to 
further his own and his community’s 
development. 

The Cockcroft Report in the UK (1982), in 
considering the teaching of primary and 
secondary school mathematics in England 
and Wales, emphasised the importance of 
‘numeracy’as the possession of two 
attributes.  The first was an ‘at-homeness’ 
with numbers and an ability to make use of 
mathematical skills which enables an 
individual to cope with the practical 
mathematical demands of everyday life.  
The second was an ability to have some 
appreciation and understanding of 
information presented in mathematical 
terms, using for instance, graphs, charts, 
tables, or percentages.   

The Australian Mathematics Education 
Project (AMEP, 1982) stated that 

“Basic skills involve more than arithmetic 
skills, and understanding of mathematical 
concepts and processes is more important 
than knowledge of isolated facts and 
skills.”   

The Beazley Committee of Inquiry into 
Education (1984) began with a broad 
definition of numeracy as “the 
mathematics for effective functioning in 
one’s own group and community, and the 
capacity to continue to use these skills to 
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further one’s own development and that of 
one’s community”, but ended up with a 
subset of a traditional mathematics 
curriculum.  

The US Standards (1989) emphasise 
‘mathematical literacy’ as much more than 
familiarity with numbers and arithmetic.  
(NCTM; 1989, 287 - 288)  Romberg gives 
a glimpse of what mathematical literacy 
looks like in practice when he suggests that 
in increasingly technologically demanding 
workplaces, workers will need 
mathematical understanding, the ability to 
formulate and solve complex problems, 
often with others, flexible problem solving 
approaches, the ability to explore and 
create new knowledge, and to read and 
interpret complex information.  He 
suggests that students will need to value 
mathematics, to trust their own 
mathematical thinking, to become 
mathematical problem solvers, to learn to 
communicate mathematically and to reason 
mathematically.  

Sue Willis (1990) suggests that “as we 
enter the last decade of this century 
schools and the broader community must 
together ask what ‘being numerate’ really 
means: what kinds of mathematical 
outcomes are most important for daily life 
now and what are likely to be important in 
the future, what ideas, attitudes and skills 
really count.  It is essential that we rethink 
what is taught in Australian mathematics 
classrooms in the name of numeracy, how 
it is taught and how it is assessed.  Finally, 
and importantly, we must address 
ourselves to the question of what kind of 
conditions are most likely to facilitate 
changes in school mathematics curriculum 
and pedagogy”. 

Malcolm Swan (1990) considers that in 
any discussion of numeracy, it is essential 
to pin down exactly what we mean by the 
word.  Most people appear to equate the 
word ‘numerate’ with ability to perform 
basic calculations.  Others maintain a 
much broader interpretation equated with 

the basic principles of mathematics and 
science.  

Kaye Stacey (1990) suggests that 
numeracy, if conceived of as the accurate 
performance of algorithms alone, is of 
little value.  “Mathematical skill developed 
without regard to problem solving and 
applications is frequently not useful and 
hence does not contribute to numeracy.  
Conversely, taking serious regard of real 
situations where mathematical ideas arise 
is important not only to learn how the 
ideas might be applied, but also for their 
acquisition”.  

Galbraith and Chant (1993) suggest that 
public perceptions of the role and purpose 
of school mathematics “indicate an 
overwhelming belief in the importance of 
arithmetic over all other branches of 
mathematics”.     

Yasukawa et al (1995) extended the 
definition of numeracy to entail a critical 
awareness (which) enables us to build 
bridges between mathematics and the real 
world, with all its diversity.  They argue 
that being numerate requires one not only 
to have this critical awareness, but also to 
take the responsibility to reflect on that 
critical awareness in one’s social practice. 

The Australian mathematics benchmarks 
project (1996-97) describes ‘numeracy’ in 
a very general way as the effective use of 
mathematics to meet the general demands 
of life at school and at home, in paid work, 
and for participation in the community and 
civic life.   

Why is the concept of ‘numeracy’ 
changing? 
Willis suggests there are four major 
reasons why the mathematical ideas and 
skills needed by people to function 
effectively in all aspects of their lives are 
changing: 

there is a need for new types of skills 

new mathematical ideas are emerging 
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existing mathematical ideas are assuming a 
new importance 

there is an increasing need for people to be 
able to question the assumptions upon 
which predictions and procedures are 
based. 

“The need for certain mathematical skills, 
particularly arithmetic and algebraic 
computation is decreasing due to the ready 
availability and portability of calculators 
and computers.  At the same time, other 
mathematical ideas, for example those 
associated with probability, statistics, 
orders of magnitude and estimation are 
assuming increasing importance, as is the 
need to understand the assumptions upon 
which a prediction or procedure is based.  
These are essential aspects of being 
numerate - permeating the media as they 
do - and are required for all levels of 
personal decision-making from relatively 
routine choices of car insurance to more 
complex decisions which may be 
necessary in court cases or in developing a 
viewpoint on the most appropriate balance 
between development and the 
environment”.  (Willis; 1990) 

How does Willis’ view of numeracy 
match what is taught in schools? 
“It is disconcerting, therefore, to note that 
the core of mathematics taught in many 
Australian schools is surprisingly similar 
in content, and often also in pedagogy, to 
much of the mathematics taught early in 
this century.  Changes brought about by 
such movements as ‘new maths’ in the 
1960s and early 1970s and ‘problem 
solving’ in the 1970s and 1980s appear to 
have had only a superficial effect on 
mathematics curriculum in practice, as 
have the advent of inexpensive hand-held 
calculators and the extensive use of 
computing technology in the workplace.  
The school mathematics curriculum in 
many ways still reflects the demands and 
priorities of economies based on industry 
and agriculture, where a majority of people 

are prepared for jobs in factories or on 
farms and an elite minority are prepared to 
enter professional careers”.  (Willis; 1990) 

In conclusion 
Willis suggests that the essence of 
informed numeracy is that students 
appreciate that with mathematical 
knowledge and understanding, they 
acquire desirable power and that an 
understanding that mathematics can help in 
the solution of their problems and their 
own decision making. (Willis; 1990) 

The first in a series of articles 
on numeracy by Beth Lee 

An Alternative Approach to 
Geometry In Years 11 and 12 
for General Studies 

Using computer technology as a fresh 
approach to teaching both the geometry of 
design and Euclid has given students the 
opportunity to develop underlying spatial 
concepts and to use these to create intricate 
geometric patterns as well as more formal 
geometric “proofs”.  The package we have 
used extensively is The Geometer’s 
Sketchpad (GSP), other similar packages 
include Cabri Geometer and The Geometry 
Supposers. 

Why use computers in mathematics ? 
The major influence of technology on 
mathematics education is its potential to 
shift the focus of its instruction from an 
emphasis on manipulative skills to an 
emphasis on developing concepts, 
relationships, structures and problem 
solving skills. (Blane, 1986) 

Michael Barraclough conducted a survey 
of years 7–10 in Victoria in 1990 and 
found that half of the respondents were 
using LOGO in year 7 for basic geometry 
concepts and shape design.  This continued 
to a lesser degree in year 8.  There was 
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also considerable use of software to assist 
in problem solving in years 7 and 8.  This 
continued to a lesser extent in years 9 and 
10 using packages such as spreadsheets 
and Green Globs.   However, the overall 
picture of the schools responding was that 
less than half made use of computer 
technology.  In the ACT calculators would 
be used in all classrooms, K to 12, but 
computers are still under utilised. 

Access may be part of the problem, 
however at present many mathematics 
courses place great emphasis on the 
development of competence in algebraic 
manipulation and the application of routine 
techniques and algorithms.  This 
philosophy assumes that practising rote 
procedures  is a prerequisite to 
understanding. 

Heid (1988) encouraged students to use 
computers for conceptual work and then 
carry out routine manipulations at the end 
of the course.  These students were 
reported as performing better at higher-
level conceptual problems than students 
taught in the traditional method, but were 
not significantly different at routine 
manipulation. Other reports (Demana and 
Watts, 1990; Machie, 1992; Ransley, 
1990; Tall, 1987; and Wild and Simmons, 
1993) have also shown that computer 
technology can enhance pre-calculus 
courses, encourage students to become 
good problem solvers and to develop 
understanding of algebraic concepts and 
procedures.  In fact performance in 
standard tests improved although the 
students may have had less “practice”. 

Why use computers in geometry? 
Students need to be able to visualise and 
analyse before they can make formal and 
informal deductions.  Students should 
create their own geometric constructions. 
Working in co-operative groups, or 
individually, they can discover properties 
by looking for patterns and using inductive 
reasoning.  A computer screen allows this 

quickly and more effectively than pencil 
and paper.  Most students do not need to 
present formal proofs, but they do need to 
be familiar with the concepts of space and 
design which underlie them.  This is the 
place of GSP and other similar programs in 
mathematics curricula.  By introducing the 
students in years 11 and 12 to the concepts 
via this computer package they have new 
insights into the basic realities of geometry 
as well as the language used. 

One of the most powerful aspects of GSP 
is it’s use of “unchangeables” or 
“invariants”. Most importantly, it gives the 
ability and motivation, to reason rigorously 
by encouraging students to make 
conjectures about properties of figures and 
constructions.  This avoids a rote rehash of 
traditional proofs. 

Students have difficulty constructing the 
traditional Euclidean geometry proofs still 
expected in many mathematics courses.  
The proofs are often learnt by rote with 
little understanding or transference to new 
situations.  Wertheimer (1990) states that 
students will not be able to create formal 
mathematical proofs in geometry until they 
have an intuitive understanding of 
geometry concepts.  This can be 
generalised to other areas of mathematics 
as well.  Proofs in geometry require an 
understanding of the language of geometry 
and spatial understanding of concepts as 
well as an ability and the motivation to 
reason rigorously. 

Other important features which make the 
computer, with appropriate software, a 
powerful learning tool are that they 
remove tedious tasks from the learner, 
enabling the students to grapple with 
mathematical ideas which were previously 
masked by difficult, repetitive procedures.  
They engage the students in an interesting 
task, similar to a game, providing instant 
feedback; and which allow 
experimentation, in a non-threatening 
environment where correction, or 
debugging and refinement, of their work is 
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normal and expected.  When students 
make mistakes using pencil and paper, 
they often become discouraged, their work 
is ruined, they feel they have failed.  With 
the computer the mistakes can easily be 
eradicated.  The student’s sense of 
achievement is greatly enhanced. 

What sorts of things can be done? 

We have used the package GSP, not as a 
proof developer as such, but as a way of 
demonstrating to the students the concepts.  
As a way of enabling them to produce 
quality work without the tedium of 
seemingly limitless, repetitive processes 
and colouring in. It is possible to conduct 
experiments without pen and paper.  For 
example, each student in a traditional class 
may be asked to draw a circle, with angles 
at the circumference and at the centre, 
standing on the same arc.  With each 
individual student using a pencil and 
paper, each student would have a different 
diagram and, hopefully the class would 
acquire the desired associations.  However, 
each student has only one example on their 
paper.  With the computer they have the 
capacity to accurately create many circles 
and angles, and to actually see the ratio 
remaining constant as they change the 
angles.  They can make hypotheses and 
test their theory.  The students own 
exploration is an important part of the 
learning process. For example:  

 Angle(EDF) = 58 ° 
 Angle(EAF) = 116 ° 
 Angle(EAF)/Angle(EDF) = 2.00 
 

 

 

 

 

 

 

 Select and drag any point E, D or F. 
 What happens to the ratio 

 Angle(EAF)/Angle(EDF) ? 
 

Figure 1.  The angle at the centre is twice the angle 
at the circumference standing on the 
 same arc, as demonstrated by GSP. 

 
Ask the students to construct a square, 
which cannot be changed into anything but 
a square.  They are forced to focus on the 
essential features of a square and how they 
relate to each other.  This exercise 
emphasises the importance of invariants-
things which will remain constant.  What 
is given is of primary importance and these 
relationships cannot be broken.  In this 
example the square is a quadrilateral with 
adjacent sides equal and perpendicular.  
Ensuring this gives an invariant square. 

These are two examples that give an 
insight into the value of using computers to 
develop student’s knowledge and problem 
solving skills. 

GSP has also allowed the students to 
appreciate a creative side to mathematics.  
They have designed complicated multi-
coloured patterns, tessellations and 
animations after four hours.  In this 
process they had grasped many line, circle, 
and transformation properties in order to 
develop these.  The following is an 
example of what students can achieve in 
two hours. With a colour machine and 
printer they can achieve even more. 
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Figure 2.  Tumbling blocks, using tessellations. 

Conclusion 
The staff found learning GSP painless and 
it was easy to teach the students.  The 
students quickly grasped the fundamentals 
and were successfully working on 
worksheets constructing geometric figures 
and making conjectures within two, one 
hour lessons.  Students and staff found it a 
positive and effective experience.  The 
computer allows an exploration more 
complete than pen/paper/compass/ 
exercises, as well as bringing in a game 
like process incorporating trial and error 
and debugging with little or no retribution 
for mistakes. 
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PROBLEMS AND ACTIVITIES 

Remember that we include a coding 
system which attempts to indicate in 
terms of year levels the suitability 
range for each item.  Thus 6 - 8 
suggests an item accessible to 
students from year 6 to year 8. 

 

(1) A Riddle 

 4 - 12 

Nature requires five, Custom allows 
seven, Idleness takes nine, and 
Wickedness eleven. 

What am I? 
 

(2) The Missing Money 

 6 - 12 

A fruit stall sells two varieties of 
apples, 30 of each variety every day.  
The different apples are sold initially 
at 3 for 60c and 2 for 60c, giving 
total takings of $15.  After a few 
days, to simplify matters the 
stallholder decides instead to sell the 
60 apples each day at 5 for $1.20, 
expecting the proceeds to stay the 
same.  Surprise, surprise!  The 
takings are 60c short.  

Where did the money go? 
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(3) Intuition Beware 

 9 - 12 

(a) Simple dice games often demand 
that a player throw a six.  Calculate 
the number of throws of a single die 
required to give a greater than 99% 
probability of a six occuring. 

(b) A classic gambling swindle 
tempts punters to bet on the chance 
of a double six within a certain 
number of throws of two dice.  How 
many times must two dice be rolled 
to make the chance of double six 
better than evens? 

 

(4) One Pile (aka Unipile) 

 3 - 12 

In its original form, probably 
antedating noughts and crosses and 
other games of position, this game 
was played with pebbles or counters.  
For younger students it is still best 
played initially with pebbles or 
counters.  Later it can be converted 
into a pure numbers game giving 
excellent practice in arithmetic and 
raising questions of who can win and 
how. 

(a) Take the Last 

A number of counters is placed in a 
pile.  The two players draw 
alternately from the pile, the object 
being to gain the last counter.  If the 
first player were allowed to seize the 
whole pile, the first player would 
win; if the draw were limited to one 
counter each turn, the result would 
depend on whether the original pile 
contained an odd or even number of 

counters.  Therefore a minimum 
draw of one counter is set, with a 
maximum larger than one. 

Suppose that the limits are 1 to 3 
counters.  Play this game a few times 
and explain how the player who can 
first leave the opponent facing a pile 
whose number is a multiple of 4 
should be able to win.   

Now investigate the game for 
different maximum and minimum 
draw numbers, and different size 
starting piles. 

Can you find a formula for winning 
pile sizes w in terms of the least l 
and most m that may be drawn at 
each turn? 

(b) Leave the Last 

Now the object of the game is to 
force one’s opponent to take the last 
counter.  Investigate again and see if 
you can come up with a formula for 
the winning pile size w in terms of  l 
and m. 
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(5) An Intercept Problem 
 10 - 12 

Three touching circles of equal 
radius R are drawn, all centres being 
on the line OE as shown. 

 

 

 

 

From O, the outer intersection of the 
line of centres with the left hand 
circle, line OD is drawn tangent to 
the third circle.  Calculate the length, 
in terms of R, of AB, the segment of 
this tangent which forms a chord in 
the middle circle. 

 

(6) Digit Move 
 10 - 12 
(a) Find the smallest counting 
number (with no leading zeroes) 
which is multiplied by four when its 
last (rightmost) digit is moved to the 
front. 

(b) Find the smallest counting 
number (with no leading zeroes) 
which is doubled when its last digit 
is moved to the front. 

QUOTABLE NOTES AND  
NOTABLE QUOTES 

A Partnership Model for Learning 
and Teaching 

The Student The Teacher 

• Chooses work which 
s/he identifies as 
worthwhile. 

• Selects items 
independently. 

• Is aware of criteria for 
choice and shares these 
with the teacher. 

• Refers back to previous 
work if model needed. 
 

• Evaluates progress by 
looking at own current 
and previous work. 

• Can present peers, 
parents and teachers 
with evidence of 
learning success. 

• Extends awareness and 
vocabulary of personal 
and curricular 
assessment criteria by 
regular reflection. 

• Chooses work which 
s/he identifies as 
worthwhile. 

• Selects items 
independently. 

• Is aware of criteria for 
choice and shares these 
with pupil. 

• Selects new  learning 
goals which build on 
previous learning. 

• Evaluates progress by 
analysis of range of 
evidence. 

• Bases new teaching 
objectives on valid and 
reliable evidence. 
 

• Develops independence 
in the learner. 

Adapted from Developing differentiation practices: 
meeting the needs of pupils and teachers by Mary 
Simpson, The Curriculum Journal, Vol. 8 No. 1, 
Spring 1997. 
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 “Maths is bouncing back in public 
esteem.  How do I know?  Well it’s a 
bit of a guess really, but I’m 
impressed that a book called 
Fermat’s Last Theorem is occupying 
magnificently the number one spot 
in the best-seller list in Britain this 
week.  Not far back is another book 
with maths as a theme: Longitude.  
And I see Penguin have an 
Australian novel coming out soon 
called The French Mathematician.” 

Robyn Williams, Ockham’s Razor, ABC Radio 
National, Sunday 29 June 1997. 

 

 
 

If you are caught in a downpour, it is 
better (i.e you don’t get as wet) to 
run for shelter than walk over a 
distance of 100 metres, researchers 
in the US advise.  The research 
involved detailed mathematical 
modelling and experimental 
verification, plus reference to 1995 
British work.  Should you decide to 
take an umbrella, remember that 
opening it will spoil your 
aerodynamics. 

New Scientist, 29 March 1997 

 

“Statistical thinking will one day be 
as necessary for efficient citizenship 
as the ability to read and write.” 

 H. G. Wells at the end of last century 

c  

“For some reason I am in everyone’s 
scientifically selected sample.  I 
suppose this is because I am a 
member of a relatively small class of 
female mathematicians.  For the 
same reason questionnaires are 
almost impossible - I always fall 
between the boxes.  Therefore I do 
not fill out questionnaires.” 

Julia Robinson, quoted in JULIA - A Life in 
Mathematics by Constance Reid. 

c  

The number you have dialled is 
imaginary.  Please multiply by i and 
dial again. 

−attributed to MIT Telephone Exchange. 

SOLUTIONS TO PROBLEMS 
AND ACTIVITIES 

(1) Hours spent in bed, according to 
Mother Goose.  Are our modern 
lives more stressful or weren’t they 
perhaps the good old days? 

 

(2) Selling all 60 apples at 5 for 
$1.20 certainly only raises $14.40.  
The average price of each apple sold 
this way is 24c, whereas it was 25c 
originally, and so we are 60 x 1c = 
60c short.  The simpleminded 
‘addition logic’ of the stallholder is 
only correct if the starting numbers 
of less and more expensive apples 
are in the ratio 3:2, which for a total 
of 60 apples requires 36 cheaper and 
24 more expensive apples, rather 
than 30 of each. 
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(3) (a) The chance of not getting a 
six in x throws of a die is (5/6)x .  We 
want the smallest integer x for which 
(5/6)x < 0.01.  This requires 

x > 2(log 6 − log 5)-1, 

that is x > 25, so that 26 throws are 
required.  The solution is easily 
confirmed using the power button on 
a calculator.   

Thus on one occasion in a hundred 
we may still be waiting for a six 
after 25 throws of a die.  Such a wait 
can be a sure recipe for childish 
tears, so game players need to use 
their discretion and perhaps modify 
the rules of games which demand 
that a six be thrown. 

(b) The chance of not getting a 
double six in x throws of two dice is 
(35/36)x.  Solving  

(35/36)x < 0.5 gives x > 24, 

so that 25 throws are needed to give 
a better than even chance of double 
six. 

Many punters fall prey to the 
fallacious reasoning that since the 
probability of obtaining double six 
on any particular throw is 1/36, 
therefore 18 throws should provide 
an even chance. (Where is the flaw 
in this reasoning?)  Betting on this 
basis means losing more than 60% 
of the time (show this!). 

Most people are surprised that both 
(a) and (b) have such large yet 
similar answers. 

 

(4) (a) 

w = (l + m)n,  

where n is a non-negative integer.  
This formula is quite general, being 
independent of the number of 
counters in the initial pile.  If the 
initial number is a multiple of l + m, 
the first player should lose; if not the 
first player can win by reducing it to 
a multiple of l + m. 

(b) A player can be forced to take 
the last counter only when there is a 
single counter left.  Hence the 
formula is  

w = (l + m)n + 1, 

where n is a positive integer.  If your 
opponent must draw from a pile of 
this size, you win by always 
ensuring that the sum of your 
opponent’s draw and your reply is l 
+ m. 

 

(5) The length of AB is 8R/5.  Our 
method for calculating it involves 
analytic geometry.  We find the 
equation of OD and the equation of 
the middle circle, both in polar form, 
then use a result from the theory of 
quadratics. 

By Pythagoras’ Theorem,  
length OD = 2R √6. 

From here on we use polar 
coordinates, taking O as the origin.  
The equation of OD in polar form is  
θ = α, where  

tan α = R(2R√6)-1 = √6 / 12, 

that is θ = cos-1 (2√6 / 5).   
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In Cartesian form, the equation of 
the middle circle is  

(x − 3R)2 + y2 = R2.  

Transforming this into polar form by 
putting x = r cosθ and y = r sinθ 
gives  

r2 − 6Rr cosθ + 8R2 = 0. 

This circle intersects the line  
θ = cos-1 (2√6 / 5) at A and B whose 
moduli r1 and r2 respectively are 
roots of the quadratic  

q(r) = r2 − (12 √6 / 5) Rr + 8R2. 

In fact, 

length AB = ⏐r2 − r1⏐ 

=⏐difference of roots of q(r)⏐. 

But  

⏐difference of roots of ax2 + bx + c⏐ 

= a-1 √(b2 − 4ac). 

Hence, length AB  

= √(864R2 / 25 − 32R2) = 8R/5. 

If preferred, the calculation can be 
carried through using Cartesian 
rather than polar equations. 

 

(6) (a) Assume the number we are 
seeking has n digits and represent it 
as ab with b its rightmost digit and a 
the integer consisting of the 
remaining n−1 digits. 

The condition stated in the problem 
requires that 

4(10a + b) = 10n-1 b + a 

with 1 ≤ b ≤ 9 and a,b both integers. 
So     39a = b(10n-1 − 4)  .......(*) 

Putting n = 2,3,4,5, .... successively 
gives the equations  

39a = 6b, 39a = 96b, 39a = 996b, 
39a = 9996b, .... . 

Cancelling the common factor of 3 
on both sides of these equations, our 
smallest solution comes when b = 1 
and 33…32 is first a multiple of 13. 

Division gives  

33332=13 × 2564=1 × 99996,  

so a = 2564 and b = 1 appear to give 
the smallest solution to our equation. 

But on checking this solution we 
find that 4 × 25641 = 102564.  Our 
apparent solution does not work, 
since a leading zero must be 
included.   

Other solutions of equation (*) for a 
in order of increasing size, are 
generated by calculating  

2564 b for b = 2,3,…,9. 

We have successively, 

2 × 2564 = 5128 and 4 × 5128 = 205128, 

3 × 2564 = 7692 and 4 × 76923 = 307692, 

and 

4 × 2564 = 10256 and 4 × 102564 = 410256. 

Thus the smallest solution with no 
leading zeroes is 102 564. 
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(b) The same approach works again, 
but this time the key equation is  

19a = b(10n-1 − 2)  

and the arithmetic is longer and 
more tedious. 

The smallest solution is  

105 263 157 894 736 842. 

-------------------------------------------------------------------------------- 

There is clearly room here for more 
investigations. 

THUMBNAIL REVIEWS 

Readers are welcome to contribute 
to this section.  Reviews can cover 
books, periodicals, videos, software, 
CD ROMS, calculators, 
mathematical models and 
equipment, posters, etc. 

-------------------------------------------------------------------------------- 

Maths for Work: Intermediate 
Published by Cambridge University Press, 
1996, 107 pages, $12.95. 

Produced as part of The School 
Mathematics Project by a team of writers, 
this is a workbook designed to be placed in 
student hands.  It aims to teach and 
reinforce core mathematics skills across 
number, shape, space and measure, and 
data handling by presenting self contained 
case studies followed by a separate section 
on the skills themselves.  Solutions to all 
questions and exercises are included.  The 
work is pitched somewhere around Year 
10 to Year 12 level in the Australian 
context. 

The eleven case studies describe practical 
situations, present information and end 
with specific questions and mathematical 
activities.  The topics are: Tin can labels, 
Food additives, Adventure park, Crisp 

boxes, Australia, The painter’s problem, 
Landscaping, House prices, Relative 
business, Cycle computer, Planning 
permission.  The core skill techniques 
section covers number work, probability, 
estimation and checking, formulas, units of 
measurement, perimeter, area, volume, 
plans and drawing, data collection, discrete 
and grouped data, mean, median, mode, 
range, and graphs.  Explanations are clear 
and direct and the practice questions 
straightforward.   

The back cover blurb talks about the case 
studies developing “core skills in a variety 
of vocational contexts”.  I take this to be 
new-speak for what in times past would 
have been described as practical 
applications of basic mathematics.  The 
British already seem to be a fair way down 
the vocational road in schools, and this 
material gives some indication where we 
might be heading if our  Federal 
Government has its way. 

British contexts, vocabulary, scenes and 
money units probably prevent this book 
being used in class sets in Australia, but it 
would make a useful addition to high 
school and college library and mathematics 
staffroom collections. 
 Peter Enge 
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Board Games Round The World 
A resource book for mathematical 
investigations 
by Robbie Bell and Michael Cornelius 
Published by Cambridge University Press, 
1988, iv + 124 pages, $26.95 

This useful book, reprinted in 1993, offers 
a selection of nearly sixty board games, 
chosen for their interest plus the 
possibilities they provide for motivation of 
students and investigation and analysis by 
them.  The universal appeal of board 
games, perhaps even greater in this 
computer age, spans the proverbial age 
range from well before nine to beyond 
ninety.  The snippets of historical and 
cultural background included here, plus 
occasional photographs of game boards 
and associated artefacts, give prominence 
to cultures and historical periods which do 
not often connect with mathematics 
classrooms. 

The games are divided into five groups: 
Games of position; Mancala games; War 
games; Race games; Dice, calculation and 
other games.  Of course, some games 
overlap the catgegories.  A sample to 
indicate the range of games might include 
noughts and crosses, three men’s morris, 
seega, mu torere (a Maori game), pong hau 
k’i (from China and Korea), solitaire, 
mancala (East and South Africa), draughts, 
tablut (from Lapland), vultures and crows 
(from India), tabula (played by the 
Romans), chasing the girls (Iceland), the 
snake game (dated from Egypt before 3000 
B.C.), lu-lu (Hawaii), and rithmomachia 
(from the eleventh century).  The games 
have been chosen to produce situations 
where mathematical investigation can take 
place.  Of course most of the games in this 
collection can be played and investigated 
at different levels and ages. 

Each chapter ends with game by game 
suggestions for investigations.  The 
suggestions are little more than starting 
points and there is plenty of room for 
students and teachers to develop their own 

lines of thought.  Notes on the 
investigations are included at the end of 
the book.  Also included is a list of 
references and suggestions for further 
reading, as well as an index.  Most of the 
material has been tried out with students in 
schools and the book includes a chapter 
dealing specifically with games and 
investigations in the classroom.  It includes 
examples of worksheets, samples of 
student work, and teacher and student 
reactions, reflections and ideas. 

This book shows how board games can be 
a wonderful source of fun and enjoyment 
in teaching and learning, and 
simultaneously increase student 
appreciation of the scope of mathematics.  
The one essential is that students must 
actually play each game before they 
analyse or investigate it.  Certainly this is a 
book which should be workshopped, 
discussed and available in every primary 
school, high school and secondary college. 
 Peter Enge 
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At Home in the Universe 
The Search for Laws of Complexity 
by Stuart Kauffman 
Published by Viking, UK, 1995. 

Kauffman, who works at the Santa Fe 
Institute searching for patterns in 
complexity, believes that the grand 
architecture of nature expressed in the 
biological world arises through more than 
natural selection sifting through random 
mutations.  He argues that while natural 
selection is important, it is underpinned by 
self organisation: in the living world, 
selection has always acted on those 
systems that exhibit spontaneous order.  
These principles of self organisation - laws 
of complexity only now beginning to be 
uncovered and understood - operate from 
the very beginnings of life.  Molecules of 
all varieties join in a metabolic dance to 
make cells, cells interact with cells to form 
organisms, organisms interact with 
organisms to form ecosystems, economies 
and societies.   

Over the past three centuries science has 
been predominantly reductionist, 
attempting to break complex systems into 
simple parts and then those parts, in turn, 
into simpler parts.  The reductionist 
program has been spectacularly successful 
at using information gleaned about the 
parts to build a theory of the whole.  The 
problem is that complex wholes may 
exhibit properties not readily explained in 
terms of features of the components.  Here 
Kauffman outlines his search for laws of 
complexity that govern how life arises 
from a soup of molecules into today’s 
biosphere.  If he is correct, this underlying 
order, honed by selection, truly makes us 
at home in the universe. 

Kauffman’s discussion includes several 
order of magnitude calculations and 
arguments based on counting and 
probability, covering autocatalysis, self 
sustaining reactions and state spaces in 
various situations.  Universal molecular 
toolboxes, random chemistry, fitness 

landscapes, learning curves, sandpiles and 
self-organised criticality, along with the 
edge of chaos are all considered.  There is 
a brief bibliography, plus an index.  
Boolean networks are used to exemplify 
the emergence of spontaneous order.  This 
is an original exploration of the dynamics 
of the living world and mathematics is 
Kauffman’s major tool. 
 Peter Enge 
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