SHORT CIRCUIT

Newsletter of the Canberra Mathematical Association INC

VOLUME 13 NUMBER I JANUARY 2022

NEWS AND COMMENT

A happy 2022 to all our readers.

CANBERRA MATHEMATICAL ASSOCIATION

Inside: Puzzles – p. 2 CMA council 2022 – p. 4 Puzzle solutions—p. 5

Coming Events:

2022 CMA conference

Memberships run from 1 Jan to 31 Dec. each year. Membership forms can be accessed from the CMA website: http://www.canberramaths.org.au

Membership of CMA includes affiliation with the Australian Association of Mathematics Teachers and a subscription to one of two AAMT journals.

As a member, you are entitled to attractive rates for the CMA annual conference and CMA professional development events.

CMA members may attend conferences of the AAMT affiliates in other states, MAV, MANSW, etc. at member rates.

PUZZLES

1. Days and dates

Christmas day fell on Friday in 2020 and on Saturday in 2021. In what year will Christmas fall on a Monday?

2. Bothersome triangle

What area is enclosed by the triangle?

SINES AND THE CIRCUMCIRCLE

This is the second part of a piece contributed by Ed Staples. The first part was in the previous edition, <u>Vol 12 No 12</u>.

The sine rule

As Euclid pointed out, *Things equal to the same thing are* equal to each other. We may have written down the Sine Rule $a/\sin A = b/\sin B = c/\sin C$ on a white board many times without a moment's thought about what quantity these ratios might all be equal to.

Consider the following triangle where each of the ratios $\sqrt{2}/\sin 45^\circ$, $\sqrt{3}/\sin 60^\circ$, and $((\sqrt{3} + 1)/\sqrt{2}) / \sin 75^\circ$ is equal to 2 (which can be verified using the well-known exact values).

We might reason that by consideration of the size of any one of the triangle's three angles and the lengths of the sides opposite them, that there may well be other triangles that could have ratios equal to 2. The explanation is shown in the diagram below with the circumcircle shown here for the above triangle.

If we select any point *P* on the circumference lying on the same side of the chord *AB* as the point *C*, then the angle *APB* in triangle *ABP* will be the same size as the angle *ACB*. Hence the ratio |AB| /sin *APB* = 2, the same value as the ratio in the original triangle.

Further, if we make *AP* a diameter, the angle *ABP* is a right angle, so that

 $|AP| / \sin ABP = |AP| / 1 = |AP|.$

Thus, the ratio is revealed as the length of the diameter of the circumscribed circle.

So next time you teach the Sine Rule, instead of writing $a/\sin A = b/\sin B = c/\sin C$ why not write $a/\sin A = b/\sin B = c/\sin C = d$, where *d* is the diameter of the circumscribed circle. Then go on to prove it.

JOB VACANCY

THE CANBERRA MATHEMATICS TALENT QUEST 2021

The Canberra Mathematical Association council was delighted with the response from local participants in the first-in-a-long-time Canberra Mathematics Talent Quest.

Students from two schools went on to be successful in the National competition. Shown below is the presentation of the NMTQ trophy to acting principal Michelle Maier at Arawang Primary School. The year 6 class won the award.

The other winning school was North Ainslie Primary.

Look out for CMTQ 2022.

Lyndall Muller, Human Resources Manager at Burgmann Anglican School writes,

Good afternoon,

We are looking for a Maths/Science teacher to work in our Middle School (6-8) in 2022.

Contact: lyndall.muller@burgmann.act.edu.au

NATURE PLAY

Coming soon! Bruce says, Take your preschool learners outside to do some maths. www.minimaths.com.au

NEWSLETTER OF THE CANBERRA MATHEMATICAL ASSOCIATION INC

PO Box 3572 Weston ACT 2611 Australia

E-mail: canberramaths@gmail.com

THE 2022 CMA COMMITTEE

President Aruna Williams Vice Presidents Secretary Treasurer Membership Sec. Councillors

Bruce Ferrington Paul Kruger Valerie Barker lane Crawford Paul Turner Peter McIntyre Theresa Shellshear Heather Wardrop Andrew Wardrop Sue Wilson Yuka Saponaro Jo McKenzie Joe Williams

Erindale College Radford College Marist College

Brindabella Christian College

University of NSW Canberra Australian Catholic University

ACT Education Directorate

ISSN 2207-5755

Theresa Shellshear is CMA's COACTEA representative.

Sue Wilson is CMA's AAMT representative.

Joe Wilson is the website manager.

Short Circuit is edited by Paul Turner.

ics in Canberra, Australia. It was established by, among others, the late Professor Bernhard Neumann in 1963. It continues to run - as it began - purely on a volunteer basis.

The Canberra Mathematical Association (Inc.) is the

Its aims include

- the promotion of mathematical education to government through lobbying,
- the development, application and dissemination of mathematical knowledge within Canberra through in-service opportunities, and
- facilitating effective cooperation and collaboration between mathematics teachers and their colleagues in Canberra.

Find us on Facebook

ABOUT THE CMA

PUZZLE SOLUTIONS from Vol 12 No 12

1. Inside or out

Begin by choosing two points randomly on the circumference of a circle. Construct the diameter that is parallel to the line joining the two points. A third randomly selected point is equally likely to be on the same or the opposite side of the diameter as the first two points. In only the first of these cases will the tangents drawn at the three points intersect to form a triangle that encloses the circle. Thus, the probability of this occurring is 0.5.

We have ignored the possibility that the first two points could themselves be at the ends of a diameter. But that event has zero probability.

2. Pascal's triangle

It's complicated!

Let the product of the numbers in row n be P_n .

The numbers in row *n* are just the binomial coefficients $\binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}$

and so, the product can be written

$$\prod_{k=0}^{n} \frac{n!}{k! (n-k)!}$$

Then,

$$\begin{split} &\frac{P_{n+1}}{P_n} = \frac{\prod_{k=0}^{n+1} \frac{(n+1)!}{k! (n+1-k)!}}{\prod_{k=0}^n \frac{n!}{k! (n-k)!}} \\ &= \frac{(n+1)!^{n+2}}{n!^{n+1}} \cdot \frac{\prod_{k=0}^n k! (n-k)!}{\prod_{k=0}^{n+1} k! (n+1-k)!} \\ &= \frac{(n+1)!^{n+2}}{n!^{n+1}} \cdot \frac{\prod_{k=0}^n k! (n-k)!}{\prod_{k=0}^n k! (n+1-k)!} \cdot \frac{1}{(n+1)!} \\ &= \frac{(n+1)!^{n+1}}{n!^{n+1}} \cdot \prod_{k=0}^n \frac{(n-k)!}{(n-k+1)!} \\ &= (n+1)^{n+1} \cdot \prod_{k=0}^n \frac{1}{n-k+1} \\ &= (n+1)^{n+1} \frac{1}{n+1} \cdot \frac{1}{n} \cdot \frac{1}{n-1} \cdots \frac{1}{1} \\ &= \frac{(n+1)^n}{n!} \end{split}$$

It follows that

$$\frac{P_{n-1}}{P_n} = \frac{(n-1)!}{n^{n-1}}$$

And therefore,

$$\frac{P_{n+1}P_{n-1}}{P_n^2} = \frac{(n+1)^n}{n!} \frac{(n-1)!}{n^{n-1}} = \left(1 + \frac{1}{n}\right)^n$$

To complete the proof, we recognise that

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

3. Cyclic quadrilateral

Using Ptolemy's theorem, the angle-in-a-semicircle theorem and Pythagoras, we have

$$3D + 3 \times 7 = \sqrt{D^2 - 3^2} \sqrt{D^2 - 7^2}$$

where D is the diameter. And so,

$$3^{2}(D+7)^{2} = (D^{2}-9)(D+7)(D-7)$$

Eventually, we find D = 9 and hence, the radius is 4.5.

4. Ptolemy's Theorem

In a cyclic quadrilateral, the sum of the products of the opposite sides is equal to the product of the diagonals.

There are various modern proofs, but Ptolemy would likely have used the idea of similar triangles. No one knows for certain.