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Warm-up activity — turn & talk

What is it that you usually do first with your class
when introducing calculus for the first time?

Formula for
differentiation by

first principles

' . Story of historical
Discussion of context
lnﬁnitesimals
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Investigating Change - Ideas for introducing Calculus Yr 11-12

Calculus not only describes change, but its discovery and development in the late 17t

century also forever changed the study of mathematics. All of our senior study designs
now offer at least one calculus-based course. In this session the presenter will share
some of his favourite calculus activities, starting with how to introduce key concepts of
differential calculus and through to a quirky Monte Carlo approach for integral calculus.
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Investigating change : an introduction to calculus for Australian schools

Authors: Mary Barnes, Curriculum Corporation (Australia)

Summary: Emphasises mathematical modelling and practical applications. More emphasis
is placed on meaning than on symbol manipulation. Investigative and exploratory activities
encourage students to become actively involved in their learning by means of cooperative
work and discussion

Show less ~
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Publisher: Curriculum Corp., Carlton South, Vic., ©1991-1993
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From Brian’s class:

Story of historical Rates of change
context Problems
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From Brian’s class:
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From Brian’s class:
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Derivative of In(x)
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Derivative of In(x)
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Derivative Trig functions
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Derivative Trig functions

fz(x)=i(f 1(x))
B(x) =cos(x)
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Restricted domain

2D Box Proble

ox
W=10.1¢cm
\ o L=19.1cm
H=5.5cm

I Vol=1050.7

Cardboard
Length 30
Width 21

 What is the maximum possible
volume of a box made from
cardboard of 21 x 30 cm?

e Support your solution with
appropriate graph(s)

* Any graphs should include

domain restrictions relevant to
the physical situation.
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Restricted domain
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Restricted domain
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Restricted domain = Holy graphs, Batman!
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Restricted domain = Holy graphs, Batman!
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Monte Carlo Simulation:
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Monte Carlo method

From Wikipedia, the free encyclopedia

Monte Carlo methods (or Monte Carlo experiments) are a broad class of computational algorithms that rely on
repeated random sampling to obtain numerical results. Their essential idea is using randomness to solve problems that
might be deterministic in principle. They are often used in physical and mathematical problems and are most useful
when it is difficult or impossible to use other approaches. Monte Carlo methods are mainly used in three distinct
problem classes: optimization, numerical integration, and generating draws from a probability distribution.

Being secret, the work of von Neumann and Ulam required a code name. A colleague of von Neumann and Ulam,
Nicholas Metropolis, suggested using the name Monte Carlo, which refers to the Monte Carlo Casino in Monaco where
Ulam's uncle would borrow money from relatives to gamble.l12

Monte Carlo methods were central to the simulations required for the Manhattan Project, though severely limited by
the computational tools at the time. In the 1950s they were used at Los Alamos for early work relating to the
development of the hydrogen bomb, and became popularized in the fields of physics, physical chemistry, and
operations research. The Rand Corporation and the U.S. Air Force were two of the major organizations responsible for
funding and disseminating information on Monte Carlo methods during this time, and they began to find a wide
application in many different fields.
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Monte Carlo Simulation:
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10 e =300, 7~ 31183
ST e et i Monte Carlo method applied to approximating
i e s s 02 the value of i After placing 30,000 random
0-8 s il e el points, the estimate for mis within 0.07% of
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i L sl S e i As points are randomly scattered inside the unit
0.4 1l s | square, some fall within the unit circle. The
SRS LG N fraction of points inside the circle over all points
approaches pi/4 as the number of points goes
toward infinity. This animation represents this

method of computing pi out to 30,000 iterations.
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By nicoguaro - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=14609430
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Monte Carlo method applied to approximating
the value of n. After placing 30,000 random
points, the estimate for mt is within 0.07% of
the actual value.

As points are randomly scattered inside the unit
square, some fall within the unit circle. The
fraction of points inside the circle over all points
approaches pi/4 as the number of points goes
toward infinity. This animation represents this
method of computing pi out to 30,000 iterations.

By nicoguaro - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=14609430
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