BAsic PROGRAMMING FOR THE CASIO

9850 SERIES OF CALCULATORS
By Martin Schmude

D000 |
el % 7] !
oD ,
OCOVOVS |

} »oo@@
006@0
O00C

,vatﬂ!@

The CASIO 9850 series of calculators offers a very powerful tool,
which is the ability to write programs. Although they don’t compare in
looks to the likes of a home computer or computer game console,
they are capable of producing useful and engaging activities for

students.

This booklet hopes to teach the basics of programming on the CASIO
CFX9850GB PLUS. Very little experience is needed to begin this
booklet. Over the course of the lessons, you will build a program from

scratch and finish with a very useful and dynamic product.

Although it is possible to write a program in the FA-123 program,
which can be downloaded for free from the CasioEd website, it is best
to learn firstly on the calculator, to ensure correct syntax. The
Contents page, that follows, has had the headings linked to the
specific parts of the document. This is designed so that when you are

viewing it on a computer you are able to jump to a certain lesson.

Any feedback or comments, as well as further questions would be

very welcomed. I hope you enjoy the learning experience.

Marty Schmude

mschmude@joeys.org

St Joseph's College
Hunters Hill

CONTENTS

SECTION 1
LESSON 1 - Starting a new program
LESSON 2 - Displaying text
LESSON 3 - Prompting for user input
LESSON 4 - Using input data
LESSON 5 - Introducing a Goto jump command
LESSON 6 — Renaming a program
LESSON 7 - Understanding the Int function
LESSON 8 - Enter an If statement

LESSON 9 - Entering Clrtext command and adjusting a Goto
command

LESSON 10 - Adding other conditions in an If statement
LESSON 11 - Adding more text in an If statement
LESSON 12 - Understanding the Ran# function

LESSON 13 - Introducing a For statement

LESSON 14 - Storing data in a list

LESSON 15 - Sorting a list

LESSON 16 - Eliminate display command and enter text

Martin Schmude 2004 © Page 2 of 31

St Joseph's College
Hunters Hill

LESSON 1 - Starting a new program

1. Once your calculator is turned on, enter the PRGM mode, using either the
arrows on your keypad and press the blue EXE key, or simply press the
button which corresponds to the letter B (log).

_LIZH%

DY'HA! 'I;ﬁBLIE RECUR CONICS EGL'{&
o248

2. Most likely, the program list is empty. If there are programs present, just
ignore them for the moment. To start a new program, press NEW (F3).

Frosram List

No Prosrams

HELL [

3. Enter in a name for your program. For starters, we’ll call our new program
"TEXT". To enter in the letters, use the buttons that correspond to the letters
above the keys. Once the word "TEXT" is written, press the blue EXE key to
enter it. You will be moved then to the working area of the TEXT program.
This is where the program writing begins.

Martin Schmude 2004 © Page 3 of 31

St Joseph's College
Hunters Hill

LESSON 2 - Displaying text
Most programs require text to be displayed. In this lesson we will write some text
and run the program to view it.

1. If you haven't already, enter the TEXT program by entering PRGM mode from
the main menu and then place the cursor on TEXT and press EDIT (F2).

2. Let’s enter in the text "FIRST NUMBER".
Notice that the text is in inverted commas. This is intentional because when
you enter text, which is to be displayed, you must encase it in inverted

commas.

The " is found in the SYBL option (F6), located in the bottom right hand side
of the screen. In this menu is the " option (F2).

3. Instead of pressing the ALPHA key each time you enter a letter, press the
yellow button, followed by the ALPHA key. This puts on (a
flashing capital A is shown), which allows you to enter the letters, one after
the other. To enter a space, press the period (.) key. Notice the red word
SPACE above the period button (.). This tells you that you must press
ALPHA to enter a space, unless is on.

4. Once the words are entered, press " (F2) again and then EXE. Pressing EXE
at the end takes you to a new line, hence the < symbol.

======TEX] ======
"FIRST MUMBER"#

5. Now let’s test it. Press EXIT twice (once to exit the SYBL menu and the other
to exit the program), then press EXE or F1 to run the TEXT program.

FIRST NUMBER |

Martin Schmude 2004 © Page 4 of 31

St Joseph's College
Hunters Hill

LESSON 3 - Prompting for user input
We are going to use the text that you entered in the previous lesson as a prompt
for the user to enter a value. You will be introduced to the PRGM menu.

1. Enter the TEXT program by entering PRGM mode from the main menu and
then place the cursor on TEXT and press EDIT (F2).

2. Place the cursor after the last " symbol, i.e. on top of the «, by using the
arrows on the keypad. If you were to enter something now, the calculator
would overtype anything in its way. To avoid this, there is an insert option
(INS). Press DEL and a flashing box will appear.

3. We will enter the ? symbol, which tells the calculator to stop and wait for a
value to be entered. This symbol is found in the PRGM menu, which is located
above the VARS button in the top row. Since the word is in yellow, it
means you must press before pressing VARS, in order to access it.

TERT
"FIRST NUMBER"¢

4. Enter the ? symbol by pressing F4. The calculator now requires a place to
store this input. The calculator has 26 memories; each corresponds to a letter
in the alphabet. Let’s assign this value to the variable A. After entering ?,
press the » button on your keypad followed by the letter A (ALPHA A). It
should look like the figure below.

5. Let's test it. Exit the program and run it by pressing EXE. The program should
stop and wait for you to enter a value by pressing the numbers, then hitting
EXE. Since there is no more code to read, the calculator displays the entered
value.

FIRST NUMBER?
18
i@

How it works

Entering the ? symbol tells the calculator to pause while the user enters a
number. The ~A then tells the calculator to store the value with the variable A.
This storing is essential to programs, so that we can recall this data to perform
other tasks, which will be our next lesson.

Martin Schmude 2004 © Page 5 of 31

St Joseph’s College
Hunters Hill

LESSON 4 - Using input data
This lesson we will learn the basics of manipulating data that has been entered by
the user.

1. Enter the PRGM mode and enter the TEXT program by pressing EDIT (F2)

2. Place the cursor on the second line in the program window. We are going to
enter the line "SECOND NUMBER"?-B<. Remember the " symbol is in the SYBL
menu, the ? symbol is in the menu, you can use , and press
EXE at the end of the line. The result should look like the figure below.

3. Let's use the two numbers that the user entered, which are now stored as the
variables A and B, and then display the product of them. Place the cursor on
the third line by pressing the down arrow on the keypad. Now enter the line
AxB4. The 4« symbol is in the (VARS) menu and it means ‘stop
the program and display this result’.

"FIRST NUMBER"?+H
;EECDND MUMBER" ?+B«

4. Let’s see it in action! Exit the program and run it. Enter the first number to be
10 and the second number to be 7. It should look like the figure below. Notice
the word - Disp — after the result. This means ‘display’ and to continue, press
EXE.

FIRST NUMEER?
16
%ECOND NUMBER?

. T8
- Disp -

How it works
The calculator prompts the user to enter two values, which are then stored as the

letter A and B using the ?-» symbols. The next command then is to multiply these
two numbers and display the result using the « command.

Why Not Try...

1. Try writing a new program called "SUBTRACT", which finds the difference

between two numbers and displays the answer.
2. Write another program that asks for three inputs from the user, then adds
them together and displays the result.

Martin Schmude 2004 © Page 6 of 31

St Joseph’s College
Hunters Hill

LESSON 5 - Introducing a Goto jump command

Most programs involve loops or ‘If’ statements. Loops are when the program
restarts from a certain point, perhaps with some different parameters. An ‘If’
statement is a way of checking the condition of a variable. Both loops and ‘If’
statements benefit from jump commands, that is, when the program is told to
‘jump’ to a different part of the program. We will introduce a type of jump
statement, called a Goto command.

1. If you haven't already, enter the TEXT program by entering PRGM mode from
the main menu and then place the cursor on TEXT and press EDIT (F2).

2. In order for the jump command to work, the program needs to know where to
go. This means the first step is to insert a ‘label’. Place the cursor at the very

beginning of the text program. Press DEL to change the cursor to
insert (INS).
3. Enter the menu by pressing VARS. You will notice the JUMP

menu. Press F3 to enter this menu.

"R
R#2+Be

./

4. There is an option called Lb|. Select this command by pressing F1. You need
to then name the label. We will call it Lbl 1. Once complete, enter a new line
by pressing EXE.

"ET
" SE
AXE

v 03
owm
|
L=

Zm
ZCX]
=
=m
om
mA

COMJCTL

[E=====TEXT ======

Lbl 1d
"FIRST NUMBER"?Re
;ggCDND HUMBER" ?+B¢

5. Move the cursor to the bottom of the program by pressing the down arrow
repeatedly. While the JUMP menu is still open, you will notice the Goto
command. Enter this operation by pressing F4. Entering the command is not
enough though. We need to tell it where to go. We want the program to go to
Lbl 1, so add 1 after the Goto command so it reads Goto 1.

6. Test it! Exit the program and run TEXT by pressing EXE. Nothing changes in
the output except that after the word - Disp - is displayed and EXE is
pressed, the program immediately jumps back to Lb| 1, and starts all over
again.

TéRST HUMBER?
gECUND NUMBER?

T8
FIRST MUMBER?

Martin Schmude 2004 © Page 7 of 31

St Joseph’s College
Hunters Hill

How It Works
When you enter a Goto command, it must have a label, Lbl, to jump to. These
labels can be named with numbers or letters, but numbers are easier to begin

with.

Martin Schmude 2004 © Page 8 of 31

St Joseph'’s College
Hunters Hill

LESSON 6 — Renaming a program
Sometimes it is necessary to rename a program. We are going to change the

name of the TEXT program to SUMDICE.

1. Enter PRGM mode from the main menu. Place the cursor, using the arrow
keys, on the program TEXT, but do not press EDIT.

2. The option to rename the program is not seen on the screen and is not hidden
in the keypad anywhere. Notice in the bottom right hand side of the screen,
an option which looks like », nicknamed ‘Des’ by Anthony Harradine. This
symbol means the bottom menu continues. Press F6 and you'll notice ‘des

more options.

3. Notice the option REN, which stands for ‘rename’. Press F2 and you'll be
prompted to change the name of the program. Enter the word SUMDICE.
Notice is already on. Press EXE when complete. The program is now

called SUMDICE.

Martin Schmude 2004 © Page 9 of 31

St Joseph'’s College
Hunters Hill

LESSON 7 - Understanding the Int function

The Int function, which stands for integer, on the calculator performs a very
important command. It can be used for such things as checking the value of a
user’s input and the simulation of dices. We are going to use it the latter reason.

1. From the main menu, enter RUN mode.

2. The INT function takes the integer part of a number. It doesn’'t round the
number up or down, it just simply truncates the decimal places. Let's
experiment with some numbers. The Int function is in the OPTN menu. Press
OPTN, which is next to the button. Follow this with ‘Des’ (F6) to find
the NUM (F4) option.

Int

Hb? rasgRhd [Int3|

3. Press Int (F4) and enter the number 5.846, then press EXE. You'll notice that
the function simply ignores the decimal numbers. Also note that it is not
unusual to place the number in parentheses.

nt (5.8467

Why Not Try...
1. Experiement with other numbers so you feel quite comfortable with this
function.

Martin Schmude 2004 © Page 10 of 31

St Joseph'’s College
Hunters Hill

LESSON 8 - Enter an If statement

If statements are one of the most popular commands in programming. They
offer enormous control and flexibility, and play an essential role. In this lesson,
we are going to restrict the values the user can enter when prompted for the
FIRST NUMBER and the SECOND NUMBER.

1. If you are not yet in SUMDICE, enter it by pressing the EDIT option in PRGM
mode.

2. You are going to limit the user to entering in an integer value. You'll be shown
now how adjust the FIRST NUMBER and you can do the same thing to the
SECOND NUMBER. Place the cursor on the first inverted comma of
"SECOND NUMBER. Select the INS (insert) option by pressing DEL.

3. Enter the menu by pressing VARS. You will see a menu labelled
COM (F1), which stands for ‘commands’. In this menu is the If statement.

Lb
T NUMBER"?+R¢ uE
ND NUMBER"?+B¢ ;:I|>S<

~

4. We are going to test A and make sure it is a whole number. If it is not, we will
prompt them to enter FIRST NUMBER again. Set the program to test the user’s
input for the FIRST NUMBER, which is variable A.

An If statement must always be accompanied with a Then statement, and
finished with an IfEnd command.

Enter in the highlighted text below. Remember to press EXE at the end of
each line, Then and IfEnd are found in the same menu as the If command.
Goto is in the > JUMP menu and Int is under the OPTN - NUM menu.
One symbol we haven't seen yet is #=. It is found in the menu, then
‘Des’, followed by the REL (relations) menu.

======SUMDICE ======
Lbl 14

"FIRST NUMBER"?-Ad
If Int (A)=Ad

Then Goto 14

IfEndd

"SECOND NUMBER"?-B«
AXB 4

Goto 14

5. Let’s see it work. Press EXIT until you are in the program list, then press EXE
to start. When prompted for the FIRST NUMBER, enter a non-integer value,
like . You should be prompted again for the FIRST NUMBER.

Martin Schmude 2004 © Page 11 of 31

St Joseph's College
Hunters Hill

How It Works
We have told the program to take the integer of A and test it against the actual

value of A. If these two don't equal, then obviously A is not an integer. The next
part of the statement is the Then command, since we said, ‘if they don’t equal,
then go to label 1. If A is an integer, the program will ignore the Then statement.

Why Not Try...

1. Enter an If statement to test the SECOND NUMBER. The program will be
exactly the same except it will be letter B.

Martin Schmude 2004 © Page 12 of 31

St Joseph's College
Hunters Hill

LESSON 9 - Entering text and a Clrtext command, and adjusting a Goto
command

It is assumed that you have completed the Why Not Try... section at the end of
the last lesson. If you haven’t, go back there now and have a go.

At the moment, our SUMDICE program has some user-friendly issues. If the user
enters a non-integer value, the program jumps back to the start. There are four
main problems with this:

1. The user doesn’t know why the program has restarted,

2. If they are up to the SECOND NUMBER, they have to enter the
FIRST NUMBER again.

3. The text is not cleared when the program restarts, which is only
cosmetic but messy nonetheless.

4. The user doesn’t know what the final answer is a result of.

At the moment, your program should look like this:

======SUMDICE ======
Lbl 14

"FIRST NUMBER"?-Ad
If Int (A)=zAd

Then Goto 14

IfEndd

"SECOND NUMBER"?-B<
If Int (B)=Bd

Then Goto 1d

IfEndd

AxB 4

Goto 14d

Adjusting a Goto command

1. Let’s start with the easiest one first, point 2: having to start again when
prompted for the SECOND NUMBER. Instead of jumping to Lbl 1, let's insert a
Lbl 2 just above the line "SECOND NUMBER"?-Bd. Of course this means we
will have the change the Goto command to 2, instead of 1. Remember to use

(insert). Go ahead and enter that now. The result should look like below.

======SUMDICE ======
Lbl 14

"FIRST NUMBER"?-Ad
If Int (A)=Ad

Then Goto 1

IfEndd

Lbl 24

"SECOND NUMBER"7?-B«
If Int (B)=Bd

Then Goto 2

IfEndd

AXB 4

Goto 1d

Martin Schmude 2004 © Page 13 of 31

St Joseph's College
Hunters Hill

2. Exit the program and give it a try. Test the second input with a non-integer
value. The program should only prompt you for the SECOND NUMBER.

Clearing text

3. The next part is clearing the text, both at the start and if the program has to
restart. This can be done with the same well-placed command. There is an
option in the (VARS) menu. We are looking for the CLR (F1)
menu. You will have to press ‘Des’ (F6) to cycle to it. In this menu, you will
find all the commands for clearing, like text or graphs. Place your cursor on
the first inverted comma in the line "FIRST NUMBER and change the cursor to
insert INS (DEL). Press Text (F1) and you will a see a ClrText
appear. Press EXE now to enter a new line.

Il
1}
1}
I
n
I
oy
[
=
3
—
[
m
I
I
1}
I
I
n

ClrTextd

If Int (A=A
Then Goto 1
IfEnde

ER" 73R

4. Enter in a ClrText command after Lb| 2. Place the cursor on the first inverted
comma in the line "SECOND NUMBER, set the cursor to INS and press Text (F1)
again. Exit SUMDICE and give it a try. You will notice the text clears each time
the program restarts.

Entering text and entering text in an If statement

5. We are going to adjust two things in this part. Firstly, letting the user know
where the result comes from. Move the cursor so it is over the A in the second
last line, AxB4. Change the cursor to INS (insert) and add the text "AxB IS",
remembering to press EXE to start a new line. Figure below might help.

======5[JMDICE ======
Then Goto 2¢

6. Try it now.

7. The second and last part of the cleanup is telling the user why their input was
not accepted if a non-integer number was entered. We are going to tell the
user before the jump. Position the cursor on the G of the first Goto in the
program (5% line) and set it to INS.

"FIRST NUMBER"?-Ad
nt (A)=Ad

Then Goto 1d

IfEndd

Here

Enter the text, "MUST BE AN INTEGER"4. We haven't yet had text that has
been followed by the ‘display’ symbol, 4. We use it here because if we did not,

Martin Schmude 2004 © Page 14 of 31

the program would not stop, and the user would never really see it. Pressing
EXE continues the program, which is the jump back to Lbl 1.
when the display command was entered, it jumped to a new line.

St Joseph's College
Hunters Hill

Notice that

8. Do the same for the SECOND NUMBER. Place the cursor on the G on the second

Goto command (12 line now, after the above adjustment)

======S§UMDICE ======
Lbl 14

ClrTextd

"FIRST NUMBER"?-Ad

If Int (A)=Ad

Then "MUST BE AN INTE
GER" 4

Goto 14

IfEndd

Lbl 24

ClrTextd

"SECOND NUMBER"?-B<
If Int (B)=Bd

Then "MUST BE AN INTE
GER" 4

Goto 24

IfEndd

"AxXB IS"d

AXB 4

Goto 1d

9. Let’s try run SUMDICE now and make sure it all works. Experiment with

different values.

Martin Schmude 2004 ©

Page 15 of 31

St Joseph's College
Hunters Hill

LESSON 10 - Adding other conditions in an If statement

At the moment we have restricted the user to entering whole numbers, if they
wish to proceed with the program. In this lesson, we will go further than that and
restrict the user to entering numbers from 1 to 10. To do this, we will use some
logic statements.

1. Enter the SUMICE program.
2. Place the cursor at the end of the line of the first If statement.

"FIRST NUMBER®'?=

If Int (A)=Ad Here
Then "MUST BE AN INTE
GER" 4

3. We are going to add that A must be greater than or equal to 1 OR less than or
equal to 10, shown below. This condition, mixed with the integer check, will
guarantee that only integers entered from 1 to 10 will miss the ‘jump to the
start’ command, Goto 1.

Notice the word OR in the previous paragraph. This is the logic gate that we
are going to use. It is hidden under OPTN (next to), then the LOGIC
menu is found by pressing ‘Des’ twice and it will correspond with F4. In this
LOGIC menu, you will see the three most basic logic gates, AND, OR and NOT.

======5UMDILE ====== ======SUMNDILE ======
"FIRST HUMBER"?+R ClrTextd

If Int CAX*A Or ¢ "FIRST HUMBER"?+Re¢
Then "MUST BE AN INTE If Int C(R2=A

GER". EEEQ{J"MUST BE AN INTE

"FIRST NUMBER"?-Ad

If Int (A)=A Or (A<1)
Or (A>10)d

Then "MUST BE AN INTE
GER" 4

The brackets around the conditions are just to help us visually about what is
going on.

4. Set your cursor to INS and press OR (F2). This inserts an OR statement. Type
i.!’l\,the bracket and then A. We need to find the < symbol.

5. Now enter the menu (VARS) and find the REL menu by pressing
‘Des’. Remember we found the = symbol in the REL (relations) menu. The
inequality signs are in there as well.

6. Enter the rest of the If line shown above.

Martin Schmude 2004 © Page 16 of 31

St Joseph'’s College
Hunters Hill

7. Let’s test it. Exit the program and press EXE to run it. You'll notice one
problem when we execute the program and enter an integer outside our
specified range. I'll leave you to see it what the user-friendly problem is.

Why Not Try...

1. Make the same adjustment to the SECOND NUMBER section of the SUMDICE
program. Instead of A the variable will be the letter B.

2. Update your SUBTRACT program with some of the new features you've
learned. Perhaps add a condition that makes the user choose a FIRST
NUMBER that is less than the SECOND NUMBER, or restarts the program if the
answer is less than zero.

Martin Schmude 2004 © Page 17 of 31

St Joseph’s College
Hunters Hill

LESSON 11 - Adding more text in an If statement

If you didn’t pick up on the problem at the end of the last lesson, it was that the
user did not know why their number wasn’t accepted, even though it was an
integer. It is because our If statement restricts their input, but the user doesn't
know all the restrictions. What we need to add is some more text to let the user
know that if they enter a value that is not a whole number, or less than 1 or
greater than 10, the program won't proceed.

1. If we were to directly add on to the line
"MUST BE AN INTEGER BETWEEN 1 AND 10.", the displayed result would look
like the figure below.

2IRST NUMBER™?

MUST BE AM INMTEGER BE
TWEEN 1 AMD 18.
- Disp -

Notice how the line breaks into the next line, which at best looks bad, and at
worst is difficult to read.

If you're not already in the SUMDICE program, enter it now.

2. You are going to cut the line into two pieces, so that all the words appear as a
whole. The best place to stop the first line would be after the word INTEGER.
That is so we use as much of the line as possible. Place the cursor on the 4«
after the word INTEGER and set the cursor to INS.

"FIRST NUMBER"?-Ad
If Int (A)=A Or (A<1)
Or (A>10)d

Then "MUST BE AN INTE

G n
ER “R___ Here

3. Press the grey DEL button next to the AC/ON button to delete the symbol 4.
If you just press EXE to start a new line, it would not remove this symbol,
and we don’t want to stop the message midway through it. Once this is done,
press EXE to enter a new line. The symbol after INTEGER should be .

NUMBER" 7+F!
r(Fl) Or CACLY O

ALl L 1L e 1 UV

4. The next part is to add the new line. Enter the text "BETWEEN 1 AND 10."4.
Use the decimal point as the full stop. Notice how once again we use the
‘display’ command because we want the two lines to be shown then the
program to pause, while the user reads the message.

Martin Schmude 2004 © Page 18 of 31

St Joseph's College
Hunters Hill

5. Let’s see it in action. Exit the program and run SUMDICE. When prompted for
the FIRST NUMBER, enter a number like 20, and the result should be as below.

When EXE is pressed, the text should be cleared and you should be prompted
for the FIRST NUMBER again. It should also be mentioned that if the user got
to the SECOND NUMBER, and entered an ‘illegal’ value, they would be
prompted for the SECOND NUMBER again, but the FIRST NUMBER will still be
present and unchanged.

Why Not Try...

1. Do what you've just done to the FIRST NUMBER Then statement, to the
SECOND NUMBER Then statement. Just so you can check if you have
everything correct, below is the entire script for the SUMDICE program so far,
as it looks on the calculator.

Lbl 14

ClrTextd

"FIRST NUMBER"?-Ad
If Int (A)=A Or (A<1)
Oor (A>10)d

Then "MUST BE AN INTE
GER"d

"BETWEEN 1 AND 10."4
Goto 14

IfEndd

Lbl 2d

ClrTextd

"SECOND NUMBER"7?-Bd
If Int (B)=B Or (B<1)
Or (B>10)d

Then "MUST BE AN INTE
GER"d

"BETWEEN 1 AND 10."4
Goto 2d

IfEndd

"AxB IS"d

AXB 4

Goto 1d

If this is how your program looks, then you should be very proud of yourself!

Martin Schmude 2004 © Page 19 of 31

St Joseph'’s College
Hunters Hill

LESSON 12 - Understanding the Ran# function

One of the most useful parts of the calculator is the ability to generate pseudo-
random numbers. If you would like to know more about them, go to How Stuff
Works website search for ‘pseudo-random numbers’. This lesson will go over
understanding the simulation capabilities of the calculator.

1. Enter RUN mode from the main menu.
2. The Ran# command is in the PROB menu, and the PROB menu is found in the

OPTN menu. Press OPTN, then ‘Des’ (F6) until you see the PROB menu (F3).
Now enter the PROB menu.

3. Press Ran# (F4) and then EXE repeatedly. You will see the calculator
performs the same action each time the EXE button is pressed. You could be
almost certain that you will not have the same numbers that are shown
below.

You may have noticed that the numbers generated lie between 0 and 0.9999...

4. Our goal for this lesson is to generate randomly the numbers of a die, 1 to 6.
If we multiply Ran# by 6, this will produce numbers 0 to 5.9995... Now comes
the tricky bit — we use the Int function that we learnt about earlier.

If we integerise the results of 6Ran#, we will generate numbers from 0 to 5.
So then the last step then is to add 1 to the result, to make the numbers from
1 to 6. The diagram below might help.

0 1
¢ —o Ran#
0 5.9999...
° ° 6Ran#
)))) <} Q
0 1 5 s 4 3 Int (6Ran#)

) ° @)) °

1 5 3 4 5 6 Int (6Ran#)+1

Martin Schmude 2004 © Page 20 of 31

St Joseph's College
Hunters Hill

5. To enter this in the calculator, all the functions are in the OPTN menu. The Int
(F2) function is in NUM (F4) and Ran# (F4) is in PROB (F3).

Int (ERan#>+1

Why Not Try...

1. While you are still in the RUN mode, see if you can make a formula to
generate random numbers between:

(a) 0 and 100

(b) 1 and 36 (good to use in class for bingo)
(c) 20 and 50

(d) =10 and 10

Martin Schmude 2004 © Page 21 of 31

St Joseph's College
Hunters Hill

LESSON 13 - Introducing a For statement

A For statement is a very efficient way of performing loops a certain number of
times. We are going to use this to simulate the summation of two dice, hence the
program name SUMDICE. The first few steps are to adjust the program before we
introduce the For statement.

1. Enter the SUMDICE program.

2. Delete the last line of the program, Goto 1, using the DEL button. We want
to add more to it now and do not wish for it to start again.

3. The final value at the end of the program, which is AxB, is not yet saved on
the calculator. We are going to assign this value to the variable C, and then
use it in later calculations. After the AxB, insert the symbols -C.

IfEndd
"AxB IS"d
AXB-C4

4. Number C is going to be the number of simulations the calculator will perform.
Go to the very bottom of the program. There is a shortcut way of doing this,
which is to press the BTM (F2) button found in the opening menu.

5. Enter the text "SIMULATION RESULTS"d on the last line, as shown below.

—————— SUMDICE ======
"BETWEEM 1 AND 18.".
Goto 2¢

I fEnde

"AXB_IS"¢

AXB+Ca

"SIMULATION RESULTS"«

6. Now for the For statement. The syntax for a For statement will need to be
explained but is simple. Below is perhaps the simplest For command you
could have.

For Statement
1 For 1-Z to 104
2 Za
3 Nextd

For Statement explained...
e Line 1: The variable Z is set to 1.
e Line 2: The value of Z is displayed (1).
e Line 3: The program jumps back to the For
command because it has reached the word Next.
e Line 1: 1 is then added to Z, making its value 2.
e This continues until Z equals 10, when it does it
the last time.

Martin Schmude 2004 © Page 22 of 31

St Joseph's College
Hunters Hill

Below are the lines that need to be entered into our SUMDICE program. It will
include the initial For statement, followed by the simulation of the two dice.
After this, the calculator will then compute the summation. It will repeat this
procedure until it has run through it C times.

For 1-Z To Cd
Int (6RAN#)+1-Md
Int (6RAN#)+1-Nd
M+N-S 4

Nextd

The highlighted portions are the bits that have to do with the For statement.
In the first line, we specify that the calculator is to start counting at 1 and is
to use Z as the variable that the calculator uses to count how loops it has
done. The Next tells the calculator to start again from the For statement, and
the value of Z is increased by 1 automatically. The increments can be adjusted
but this will not be discussed here now.

In the other lines, you will notice the two simulations with the Ran# and Int
functions, whose values are stored as M and N respectively. The following line
then adds the outcomes together, stores the result with the letter S and
displays the result, shown by the « symbol.

7. Enter the (VARS) menu and then the COM (F1) menu, which is
where we found the If commands. You will need to press ‘Des’ to find the
For, To and Next commands.

======5[JMDICE ======

"BETUEEH 1 HND 18.",
Goto 24

I fEndd
"AXE IS"¢
AxB+C.4

[For 1 To I5tepInie: t I EE

8. Enter in the complete For statement as shown in point 6. It should appear as
in the figure below.

"SINULHTIUH RESULTS"#
For 132 To

Int (6Ran#)+1+M@

ént CERan#)+1+Me

9. Give it a rip! Exit the program and press EXE to run it. Set the FIRST NUMBER
to 5 and the SECOND NUMBER to 2. This will produce 10 randomly generated
summations. You will notice that 11 numbers appear because the last number
is displayed again as the overall final result.

How It Works

A For statement creates a way of looping a certain number of times. This is
useful, especially when running simulations many times, or drawing lines when
doing graphics, which will be discussed in Section 2 of this booklet. The key to
using a For statement is to ensure 4 main things:

e Have a number the calculator starts counting from.

e Include a variable that calculator uses to count with.
e Have a number that the looping finishes at.

Martin Schmude 2004 © Page 23 of 31

St Joseph's College
Hunters Hill

e A For statement is always accompanied with a Next command,
just like an If statement must be accompanied by a Then and
IfEnd statement.

Why Not Try...

1. Write a new program called TIMES that uses a For statement so to display the
7 times tables. Make sure you clear the text at the start.

2. Using the TIMES program you just wrote, why not add a feature that allows
the user to enter the number who's times table will be displayed.

gHHT NOMEER™

Pl
| SN

I
-
=
]
7

3. Using the TIMES program, add a condition to this ‘input feature’, so that it
restricts the user to integers and numbers between 0 and 15.

Wﬂ? AT HUOMEER?
INTEGERS ONLY EETWEEM 1 AND 15

Martin Schmude 2004 © Page 24 of 31

St Joseph's College
Hunters Hill

LESSON 14 - Storing data in a list

The usefulness of the results in the simulation is limited because the outcomes
are not stored anywhere, since the variable S is always changing during each
loop. This is why it is a good idea to store data in lists (sometimes called arrays),
where it can then be analysed later. This is the purpose of this lesson.

1. Enter SUMDICE program and place the cursor on the first inverted comma of
the line "SIMULATION RESULTS.

2. Set the cursor to INS (insert).

3. In order to store the data in a list, we must first set the dimensions of the list.
This means telling the calculator how many elements there are to be stored.
Since we are using the variable C as the number of simulations, this will be
used as the dimensions of list 1.

The line will read C»Dim List 1. The commands Dim and List are found in
the LIST menu, which is in the OPTN menu. Press OPTN, followed by LIST
(F1). Just about any action that relates to lists will be found in this menu.

======S[MDICE ====== SUMDITCE
"AXB_IS"d "AXB IS"¢
AXB>C. AXB+C.
"SIMULATION RESULTS"« "STMULATION RESULTS"«
For 1+Z2 To C¢ For 1+Z To C«
CERand#)+1+Me Int (GRan#)+1+Me
NLNCERan#) +1+Neg L
(2 (e o D o e

A Bit of Extra Help

Just to help you understand what has just happened, feel free to
try this little exercise.

Enter RUN mode from the Main Menu. Enter this line and press
EXE.

5-Dim List 1d

This line says that I want to have 5 ‘empty’ elements in List 1
(they are in fact filled with the value of 0).

Press MENU and then enter STAT mode. You will see that there
are 5 'empty’ elements in List 1.

o*Dim Cist 1 List I[List g[List J[List U
Done

4. Go ahead and enter the line C»Dim List 1d. Remember to press EXE at the
end to start a new line. The product should look like this:

AxB-C4

C-Dim List 14
"SIMULATION RESULTS"d

Martin Schmude 2004 © Page 25 of 31

St Joseph's College
Hunters Hill

5. Before we move on to the next part, let’'s see what the effect of the new line
makes. Exit the program and run it by pressing EXE. Arrange it so that C
works out to be 10. When the text SIMULATION RESULTS is displayed, press
your grey MENU key, then 2, to enter STAT mode.

List [JList afList 3[Li

il
B
|
o
|

You will notice that this command has created 10 ‘empty’ elements in list 1.
As a rule, whenever you want data to be stored in a list (during the execution
of a program), you must first create empty elements using the command
described above. This is, if you tried to enter data in position 11, you would
receive an error message.

6. Return to the main menu by pressing MENU and then enter PRGM mode, and
then SUMDICE.

7. Now move the cursor to the beginning of the final line, which is the Nextd
command.

Int (6Ran#f)+1-Md
Int (6Ran#)+1-Nd

M+N-S
Here — 4 Nextd‘

8. Set the cursor to INS (insert).

9. We are going to add a line that enters the result of the summation, S, in list 1
of STAT mode. This line will be added within the For statement, in order to
make use of the incremental qualities of the variable Z. The rows that the
results will be entered in will be from 1 to C. Below is the line to be added.
The square brackets are the ones above the + and - buttons. They are in
yellow so the button must be pressed to access them. A deeper
explanation of this step is at the end of this lesson.

M+N-S 4
S-oList 1[Z]
Nextd

10.0n the line below the command Nextd, add the text "PRESS MENU 2"d. This
tells the user how to quickly enter STAT mode. Pressing MENU will generally
take you from anywhere in the calculator to the main menu. The number 2 is
because STAT mode is the second option in the main menu, as shown below.

S=====0 T === [U
Int (ERan#)+1+Me RUN B MAT JLIST | GRAFH
It CERanI pel [Je

DYHA] TAELE RECUR COHICS EQUA
Nextd TREL] Eavm
WERESS MENU 2" %lﬂiﬂﬂd@dod

11.Let’s test it now. Exit the program and press EXE to start it. Enter the
FIRST NUMBER as 5 and the SECOND NUMBER as 2. Once the program is
completed and the message, PRESS MENU 2 has been shown, press MENU
then 2 and scroll through the results stored in list 1.

Martin Schmude 2004 © Page 26 of 31

St Joseph'’s College
Hunters Hill

How It Works
Perhaps the best way to explain this lesson is to look at the coding for the entire
For statement.

For 1-Z To Cd
Int (6Ran#)+1-Md
Int (6Ran#)+1-Nd
M+N-S 4

S-List 1[Z]d
Nextd

When the program first comes to the For statement, it will set Z to 1 and go
through and execute everything on the way to the Next command. This means it
will get to S»List 1[Z] and send the value of S (which has been set as M+N) to
List 1, row Z, which at the moment is 1. After this, the program will move on to
the next line, which is the Next command in this case.

Once it gets to the Next command, the program will go back to the For command
and do it again, except Z will now be set to 2. So then the new value of S will be
sent to List 1, row Z, which is now 2. This will continue over and over again
until Z=C.

Notice how having the S-»List 1[Z] command within the For statement utilises
the way Z increases by 1 each time.

Just as a side note, the maximum number of elements that this particular
calculator can handle in 255.

Why Not Try...

1. Write a new program that will generate an integer between 1 and 20, which is
then used for determining the number of loops in a For statement. The
purpose of each loop will be to display the number of loops that have occurred
up till then.

Martin Schmude 2004 © Page 27 of 31

St Joseph'’s College
Hunters Hill

LESSON 15 - Sorting a list

It can make things much easier to analyse a list if the data is sorted in an order,
whether it be ascending or descending order. The calculator is capable of doing
both. In this lesson, we are going to learn how to sort a list.

1. Enter the SUMDICE program and press BTM (F2), which sends the cursor to
the very bottom of our code. We are going to place the sort command here so
it will sort the list before the user is told to go STAT mode.

S-List 1[Z]d

Here = —~y Nextd
"PRESS MENU 2"d

2. Set the cursor to INS (insert).

3. All we need to find is the Sort command. The menu, which appears when you
first enter a program, contains the MENU (F4) menu. In this you will find a
LIST (F3) menu. Press this option and you will see a Srt-A (F1) and Srt-D (F2)
option. Srt-A means ‘sort ascending’ and Srt-D means ‘sort descending’.

======5JMDILE ====== ======5UMD I LE SUMDICE
M+MN+5, M+MN+S. M+N+S4
S+List 1[Z]¢ S+List 1[Z21d S+List 1[Z21«¢
ex Nex MNex
\“PRESS MENU 2"« "PRESS MENU 2"¢ "PRESS MENU 2"&
I3+ +-ALSH <[I

F+M+S.
TN [SaList 10zl

SortAC"PRESS MENU 2"¢

=

15t +-A15t <) I

5. Enter the command List 1. Recall that the way to get to the command List
is through OPTN, then LIST (F1) and then LIST (F1). Type in 1 after that,
close the brackets and press EXE so it is on its own line. The final result
should read:

Nextd
SortA(List 1)d
"PRESS MENU 2"d

6. Exit SUMDICE and try it. When you enter STAT mode, List 1 will be sorted in
ascending order.

Martin Schmude 2004 © Page 28 of 31

St Joseph’s College
Hunters Hill

LESSON 16 - Eliminate display command and enter text

Since the results are now being stored in a list, it seems unnecessary to have to
view them in RUN mode, where the program is executed in. This is very time-
consuming, especially if the number of simulations is large. In this lesson, we are
going to eliminate the display command, 4, and add some extra text.

1. Enter the SUMDICE program.

2. We are going to delete and replace the command that displays each result as
it happens. Place your cursor on the display command, in the For statement,
and set it to INS (insert).

For 1-Z To Cd
Int (6Ran#)+1-Md
Int (6Ran#)+1-Nd
M+N-S 4

S-List T[zye— Here

Nextd

3. Press DEL next to the AC/ON button to delete this command. Replace it with
a new line symbol, <. This will stop displaying of each result as the program
proceeds.

For 1-Z To Cd
Int (6Ran#)+1-Md
Int (6Ran#t)+1-Nd

M+N>Sd
S->List‘1K[TJ‘TJ/ here

Nextd

4. What would be a good idea now would be to enter the word "COMPLETE" at
the end of the program, just before the "PRESS MENU 2". This will let the user
know that the SIMULATION RESULTS are complete.

For 1-Z To Cd
Int (6Ran#)+1-Md
Int (6Ran#)+1-Nd
M+N-Sd

S-List 1[Z]d
Nextd
"COMPLETE" «
"PRESS MENU 2"d

5. This should do it. Exit SUMDICE and give it a try. Since the program will run
much more quickly now, why not set AxB to be 100. The final result before
going into STAT mode should look like the figure below.

SECOND HUMBER?
AXB IS

166
OM RESULTS

Martin Schmude 2004 © Page 29 of 31

St Joseph's College
Hunters Hill

The Final Program

Well done, you’ve made to the end of the first section! You have learnt a great
deal considering the first lesson was learning just how to display text. Now you
have some idea of the basics of writing a program, and understand the power of

some commands like an If statement. Well done!

Below is the complete script of the SUMDICE code that you have written over the

lessons. Our next section is where the real fun begins - graphics - coming soon!

Lbl 14

ClrTextd

"FIRST NUMBER"?-Ad

If Int (A)=A Or (A<1)
Or (A>10)d

Then "MUST BE AN INTE
GER"d

"BETWEEN 1 AND 10."4
Goto 1d

IfEndd

Lbl 2d

ClrTextd

"SECOND NUMBER"7?-B«
If Int (B)=B Or (B<1)
Or (B>10)d

Then "MUST BE AN INTE
GER"d

"BETWEEN 1 AND 10."4
Goto 2d

IfEndd

"AxXB IS"d

AXB-C 4

C-Dim List 14
"SIMULATION RESULTS"d
For 1-Z To Cd

Int (6Ran#)+1-Md

Int (6Ran#)+1-Nd
M+N-Sd

S-List 1[Z]d

Nextd

SortA(List 1)d
"COMPLETE" «

"PRESS MENU 2"d

Martin Schmude 2004 © Page 30 of 31

St Joseph’s College —
Hunters Hill \\l

Why Not Try... el

1. It seems silly that the number of trials is the result of the product of two
numbers. Why not rewrite the beginning of SUMDICE so that the user is
prompted at the beginning for the NUMBER OF TRIALS to enter in how many
simulations there should be. The maximum number of entries in list is 255.

§ TRIALS

ON RESULTS
NU 2

mm—= X

2. Since the maximum number of trials is 255, set up the program so that the
user must enter an integer value which is 255 or less.

3. SUMDICE is a very useful program when talking about probability, normal
distribution and statistics. Experiment with the program and take note of the
mathematics it is doing, like displaying the data stored in List 1.

HLAVE FUN PROGR AMMING

Martin Schmude 2004 © Page 31 of 31

