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The Velocity Dependence of Aerodynamic
Drag: A Primer for Mathematicians

Lyle N. Long and Howard Weiss

1. INTRODUCTION. If you pick up nearly any elementary ordinary differential
equations text or calculus text, you are likely to find a short section, or at least a
problem, on the motion of a body subject to some type of drag force along with a
calculation of the body’s terminal velocity. Two favorite examples seem to be the
motion of a projectile like a baseball and the motion of a skydiver/parachutist,
both through the air. By a skydiver we mean a person falling without his parachute
open. Most textbook authors model the motion of these objects using a drag force
that depends linearly in the velocity. Unfortunately, the physical assumption about
the linear dependence of the drag force on velocity is often incorrect, and thus the
model’s predictions are physically implausible.

In particular it was surprising to sec thc faulty linear resistance model for a
parachutist’s velocity used in the popular calculus reform text by Hughes-Hallet,
Gleason, et al. [9, p. 515], since the reform movement prides itself on concern for
realistic applications. The first edition of this text even supplied non-referenced
observed data to fit its linear model. The authors state “The fact that there is good
agreement between the observed and predicted data suggest that our assumption
about the air resistance is reasonable.” The recent second edition omits the table
of observed data but not the flawed model.

The purpose of this note is to cxplain the dependence of the drag force on
velocity for a general mathematical audience and to present a few realistic models.
Section S contains an intercsting model (with a closed form solution) for re-entry
of the spacc shuttle into the earth’s atmosphere.

Dimensional analysis is an important tool in aerodynamics and fluid dynamics,
and can be used to obtain key results (5) and (6). To help give mathematicians
some insight into the spirit of this important technique, we present in Section 6 an
amusing application of dimensional analysis to prove the Pythagorean Theorem.

The science of modeling drag is more physical and empirical than mathematical,
and it relics on the results of many wind-tunnel experiments. There has becn a
significant amount of theoretical work in the engineering literature, but few of the
results can be considered completely rigorous by mathematical standards. There
are also large gaps in our understanding of basic propertics of the Navier Stokes
equation. In particular, there are important unsolved problems on the large-time
cxistence and uniqueness of solutions of the Navier-Stokes equation in three
dimensions.

For detailed information on the acrodynamics and fluid mechanics pertinent to
this paper, see [7), (8], [11], [12], (19], and [22].

2. THE BASIC EQUATIONS OF MOTION. Any body moving through a fluid
such as water or air creates a drag force that tends to retard its motion. Such
motion is usually described by the Navier-Stokes (nonlinear partial differential)
cquations. In clemcntary textbooks, the motion is always assumed to be one
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dimensional, e.g., the ball is dropped and the skydiver has no horizontal movement
and there is no wind. We observe in Section 4 that this assumption does not permit
modeling of a modern parachute. Many (if not most) elementary mathematics
textbook authors assume that the drag force for a bascball or skydiver/parachutist
moving in air is proportional to the velocity v of the falling body, and at least one
leading freshman physics text makes this assumption. This leads to the linear
differential equation of motion
dv

m—r = mg — kv, (1)
where k, is a constant (whose. physical meaning is rarely discussed), m is the mass
of the body, and g is the gravitational constant. This linear differential equation
can be solved casily to obtain the body’s velocity as a function of time, beginning
at rest:

u«o==§§(1—cnm—ku/mn, 5,(0) = 0. @

The terminal velocity is lim,_ .v(t) = mg/k,. This terminal velocity is just the
equilibrium solution of (1) and could have been obtained easily directly from (1)
without explicitly solving the differential equation since physically, the terminal
velocity corresponds to the motion when the drag force precisely equals the weight
mg of the falling object. While this model may be correct for bodies that are falling
in a vat of heavy oil or for tiny particles of dust or acrosol in air, it is grossly
incorrect for large bodies falling in air. Any such simple model is necessarily a great
simplification of the Navier-Stokes equations for the actual motion of a ball
or skydiver.

Calculations predict and experiments confirm that in air, the drag force on a
ball or a skydiver/parachutist can be well approximated by a force that is
proportional to the square of the velocity v? (and not to the velocity v). The v?
model for the drag force leads to the nonlinear equation of motion

dv Koo? 3
m= = mg = ky?, (3)
where k, is a constant. This is a separable equation, which can be solved easily to
obtain the body’s velocity as a function of time, beginning at rest:

by(t) = 1/'I':—f tanh(t‘/k;—g ) 0,(0) = 0. (4)

The terminal velocity is lim, | ,v,(t) = y/mg/k,, which is just the equilibrium
solution of (3) and could have been obtained easily directly from (3).

Table 1 contains the experimentally detcrmined terminal velocities for various
objects moving through the air. There is a wide range of values for the terminal
velocity of a skydiver because the terminal velocity strongly depends on his body
position and is considerably higher (almost by a factor of two) during a head first
nose dive or feet first dive than during a fall in the spread eagle belly-to-Earth
position. The former positions arc highly unstable and are difficult to maintain for
more than a few seconds. In order to minimize the strong shock to the body at

deployment, beginners typically reduce their free fall speed to about 50 m/s
before deploying their parachute.
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TaBLE 1. Approximate terminal velocities for various objects (from Table 9.1 in (4D

Object Weight Terminal Velocity
(kg (m/s)
iron ball (shot) 73 145
Skydiver 72.6 + 19 (equipment) = 91.6 451080 +
Football 041 45
Bascball 0.15 42
Golfball 0.05 40
Softball 0.18 80
Tennis ball 0.06 36
Basketball 0.6 20
Ping-Pong ball 0.003 9
Parachutist (round canopy) > 72.6 + 19 (equipment) = 91.6 5

3. SMALL AND LARGE REYNOLDS NUMBERS FLOWS. In general, the drag
force depends on many factors including the density and viscosity of the fluid, and
the geometry, surface material, surface regularity, and velocity of the body. The
dimensionless Reynolds number of the fluid plays a key role in determining the
drag force, and is defined by

pdv dv

=—, or R=—,

In v
where p is the density of the fluid, v is-the velocity of the body in the fluid, u is
the viscosity of the fluid, » = u/p, and d is a characteristic length (see Table 2).
This characteristic length could be a radius, a diameter, a chord length, a body
length, etc. depending on what aspect of the problem one is studying. Note that a
slowly moving object may have a large Reynolds number if the object is large
or the viscosity is small. Turbulent flows are typically associated with large
Reynolds numbers, while laminar flows are typically associated with small
Reynolds numbers.

TABLE 2. Typical Reynolds numbers for various objects moving in air

Object Characteristic Length Typical Reynolds Number
Submarine Length 300,000,000
Small aircraft Chord 5,000,000
Parachutist Diameter 2,500,000
Skydiver Diameter 1,000,000
Baseball Diameter 250,000
Model airplane Chord 50,000
Butterfly Chord 7,000
Dust particle Diameter . 1

If the Reynolds number is small, meaning R < 1, the Navier-Stokes equation is
considerably simplified and the equation of motion reduces to a linear partial
differential equation. Strictly spcaking, one should assume R < 1, but the approx-
imation is often reasonable for R = 1. Stokes analyzed this linear differential
cquation and found the following formula for the drag force, F,, on a sphere of
radius r moving in the fluid [21, p. 217):

Fp = 6mpru. (5)

This expression is exact in the limit as the Reynolds number goes to zero. Thus,
the drag force is proportional to the velocity and the radius of the sphere. Since
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the fluid density does not appear in the linear partial differential equation, the
form of formula (5) can also be obtained with simple dimensional arguments: if the
drag force depends only on g, r, and v, one shows the only function of these
quantities that has the units of force is Fp, = Curv, where C is a constant.
A rigorous argument can be based on the Pi theorem of Vaschy and Buckingham
[1, p. 42}, [2], [3]

Formula (5) can be extended to flows with non-zero Reynolds number. Using
techniques in the theory of matched asymptotic expansions, the Stokes approxima-
tion (5) can be improved [17] to an asymptotic expansion of the form

3 9
Fp = 6muro|1 + 2R + ER’ log R + O(R?)].

Table 3 contains the values of u and v for oil, water, and dry air at 100° F. It is
known that the viscosity of oils increases rapidly with decreasing temperature.

TABLE 3. Typical values of u and » at 100 degrees F

Medium 1 (kg/m sec) v (m?/ sec)

castor oil 0.29 28 x 10~*
water 0.686 x 1073 0.691 x 107
dry air 0.19 x 104 1.9 %1078

It has been determined experimentally that (5) is valid for Reynolds numbers
R <1 and that a similar dependence occurs in this range of R for bodics with
other shapes, i.e., the drag force
Fj, = constant X uu,

where the constant is independent of v. This can be rewritten as Fy, = kv, where
k = constant X u (see (1) and (2)). From Table 2 we sec that baseballs and
skydivers /parachutists have R > 1.

Therc arc some interesting implications of low Reynolds number flows in
biology. In particular, [20] describes the role of terminal velocity in pollen disper-
sal, while [6] answers the question “Why are therc so few aerial plankton?” by
explaining how high atmospheric terminal velocities confound the ability of turbu-
lence to keep organisms afloat.

Although there arc interesting flows where the drag depends linearly on
velocity, they are typically associated with small objects such as raindrops, dust
particles, ctc. The book [14] contains a discussion of modcling falling raindrops
over a wide range of Reynolds numbers.

When the Reynolds number is large, but not too large, the flow may remain
laminar. These cases can be studied using the Navier-Stokes equations in the thin
boundary layer around the body where this flow is assumed to be laminar. The
resulting equations are called Prandtl's equations [11] and one can conclude that
(at least for a certain range of R) the drag force is independent of the viscosity.
One then uses facts about the Bernoulli cquation or dimensional analysis to
conclude that

» = constant X pAv?, (6)
where the constant depends only on the shape and surface characteristics of the
body. Numerous experiments in wind tunnels and in aircraft flight tests during the

past 80 years have verified that this formula is valid for Reynolds numbers between
3% 10% and 3 X 10
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For flows in the range of Reynolds numbers, it is customary to introduce the
drag coefficient, Cy,, which is the dimensionless quantity defined by

Fp

Cp = :
O dpAr?

(M

With this definition and (6), we have Cp = constant, i.e., the drag coefficient
depends only on the shape and surface characteristics of the body and the
Reynolds number. Thus in (3) and (4), the constant k = 3C,, pA. Furthermore, the
dynamic pressure ¢ = $pv? plays a fundamental role in aerodynamic theory [7]. For
instance, when the space shuttle Challenger exploded, it was operating in a high
dynamic pressure regime. Very fast aircraft nced to operate at high altitude (where
p is relatively small) to avoid excessive dynamic pressure and catastrophic damage
to the aircraft.

For smooth spheres having Reynolds numbers in the range 10° to 3 X 105, the
drag coefficient is approximately 0.47, while for Reynolds numbers greater than
3 X 105, the drag coefficient is approximately 0.20 (see Figure 1). The text [22]
contains a good exposition of sphere drag for R between 1 and 10°.
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Figure 1. Drag coefficicnt Cj, for a sphere as a function of Reynolds number R (from Figure 34 in [11])

It follows from (4) and (7) that the terminal velocity for a sphere falling in air is

approximately
W
= pCpmr?’

where W is the weight of the sphere, p is the density of air at sea level, and r is
the radius of the sphere. The density p is a complicated function of temperature,
humidity, and pressure (which varics with altitude) so this equation is only an
approximation.

The motion of a baseball, with its rough surface, is actually considerably more
complicated to model accurately than the motion of a smooth sphere [13].

4. SKYDIVING AND PARACHUTING. We now discuss the motion of a skydiver
and a parachutist; uscful technical references arc [8), (10], [18], and [16]. Just as for
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a sphere falling in air, the terminal velocity for a skydiver is approximately

/ 2w
Ur = —_— (8)
pCpA

where W is the combined weight of the skydiver and parachute, A is the effective
cross-sectional area of the skydiver, and the density of air is p = 1.225kg/m’.
Solving for the drag coefficient C, we obtain

2w w 9
Co= 7 e 9
where g is the dynamic pressure corresponding to terminal velocity.

If a 72.6 kg skydiver carrying a 19 kg load (91.6 kg = 867 N) attains a terminal
velocity of 49 m/s (in the belly-to-carth position) and has a cross-sectional area of
0.56 m?, it follows from (9) that Cp, = (2 X 867)/(1.225 X 0.56 X 49%) = 1.05.

Morcover, if our skydiver attains a terminal velocity of 67 m/s (in the head
down or feet down position) and has a cross-sectional area of 0.2 m? in this
position, it again follows from (9) that C, = (2 x 867)/(1.225 X 0.2 X 67%) = 1.57.
Actually, even if the skydiver could maintain the head down or feet down position
over a long period of time, his ratc of descent would continually slow due to the
increasing density of air at lower altitudes.

In the 1960s, a 72.6 kg beginner sport parachutist might have used a circular
parachute with a canopy area of 74.8 m?, and would have carried about a 22.7 kg
load (95.3 kg = 934 N) [15]. The parachute would have had C, = 0.8. It follows
from (8) that the terminal velocity for the parachutist is approximately [(2 X
934) /(1.225 x 0.8 X 74.7)]'/? = 5.1 m/s. Many measurements have confirmed that
this prediction is quite a close approximation to the actual terminal velocity.

The sport parachutes used today bear little resemblance to the old classical
round canopies, although the latter are still preferred by the military. The
military’s round canopics also have a relatively small area, which results in much
harder landings than with modern sport canopies. Today, nearly all jumpers usc
cither square (actually rectangular) or elliptical canopies, made from a non-porous
material. When open, these canopies act like an airplane wing or an airfoil, and
generate lift throughout the flight; they do not work by drag alone and are more
like gliders than umbrellas. In addition, these modern square or elliptical canopics
actually have brakes that the parachutist can apply close to the ground to achieve a
gentic landing. Because of the lift that these canopies generate, their motion can
not be modcled solely by the simple v? drag force model with the force paraliel to
motion.

However, we can obtain a reasonable mode! of a modern parachute by adding
an extra term to (3) corresponding to the lift generated by the canopy. These are
the same equations that are used to model flight of an unpowered airplane (a
glider) or re-entry of the space shuttle into the earth’s atmosphere. The force due
to lift, F,, is proportional to the square of the velocity, but now it is important to
consider the horizontal component of motion—thus the new model is necessarily
two dimensional and (3) is replaced by a pair of coupled nonlinear cquations [7).

It is convenient to work in a special (rotating) coordinate system centered on
the ccnter of the carth. Letting V' denote the tangential component of velocity for
the unpowered aircraft, the cquations of motion arc

dv y?

m— = —F, — Wsin$, m— = —F, + Wcosé8 (10)
dt re
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where 6 denotes the climb angle, r. is the radial distance of the aircraft to the
center of the earth (which we approximate by the radius of the earth),

FL = %CL pAVz, FD = %CD pAVz,

C, is the coefficient of lift, and C,, is the cocfficient of drag (see Figure 2).

p?

/72'
k

Figure 2. Forces on an unpowered aircraft

In general, even for a parachute, the equations in (10) do not have a closed form
solution. However, there exists a closed form solution in one remarkable case that
models re-entry of the space shuttle into the carth 's atmosphere. We discuss this
example in Section 3.

5. RE-ENTRY OF THE SPACE SHUTTLE. The following model provides a
reasonably accurate model for a lifting body, such as the space shuttle on re-entry
into the atmosphere, with a closed form solution. This remarkable example should
be much better known to mathematicians and can easily be presented in a first
course on differential equations.

During much of the time during the space shuttle’s re-entry, its velocity is
approximatcly perpendicular to a line connecting the shuttle to the center of the
carth, although at some instants the angle is quite large. In this model we assume
that this is the case for all time. It then follows from (10), using 6 = 0, that the
tangential velocity V of the shuttle satisfies

dv
m—- = -Fy, mV¥%rp=-F +W, (11)
where Fi = lift force = C, pV'?4/2, F,, = drag force = Cp pV'%4/2, and r, =
radius of the earth.
For the space shuttle, it is reasonable to assume that C, =05 C, =05,
A =372 m? and W/(AC,) = 100. Over the flight envelope of the space shuttle,
the quantity F; /F, = C; /C), varies from about 1.0 to 1.8, and at high speeds it is
roughly 1.0; for this simple example we approximate it by the constant 1.0.
We can rewrite (11) as

dv

1 4\ g Lo
- el M w T T a/®
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where V. = y/grg . Dividing these equations gives the single equation

B 2% dv
AR

Since F,/F, = C,,/C,, we obtain the separable equation

dv

v, _ Cog dt

y? 2 C.V. '
e

which can be integrated to yield the closed form solution

V(t) = V- tanh Dgl + arctanh -ﬁ
¢ C. .V, Ve

= V, tanh ——-lﬁ-t + arctanh(—-l-/o—) (12)
¢ CLVere V&E ‘ .

where 17(0) = V,. Actual space shuttle flight test data [5] show that the vclocity
predicted by this simple model is reasonably accurate even though it is based on
many simplifying assumptions.

One can use (12) to estimate the maximum acceleration experienced by the
space shuttle upon re-entry.

6. PROOF OF THE PYTHAGOREAN THEOREM USING DIMENSIONAL
ANALYSIS. We follow [1, p. 49] and give an insightful application of dimensional
analysis to prove the Pythagorean theorem.

The arca A of a right triangle is determined by its hypotenuse ¢ and, for
definitencss, the lesser of the acute angles ¢: A = f(c, ¢). Since the units of area
are the square of units of length, dimensional analysis gives A = c’g(¢). The
altitude perpendicular to the hypotenuse (sce Figure 3) divides the basic triangle
into two right triangles that are similar to it, and whose hypotenuses are the sides
a and b of the original triangle. Their areas arc 4, = a’g(¢) and A, = big(¢).
But 4 = A, + A,, and thus c’g(¢) = a’g($) + b’g($). Hence a* + b* =c2. ®

Figure 3. Right triangle
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7. CONCLUSION. We have discussed modcls of motion for objects with small
Reynolds numbers (R < 1) and for large Reynolds numbers (R > = 100). It is
quite difficult to model the motion of most objects with Reynolds numbers in the
intermediate range. The models we have discussed are quite popular with students
and impress upon them, early in a differential equations course, the power of
differential equations to model non-trivial physical phenomena. We applaud the
trend in the new generation of calculus and differential equations texts to discuss
more physical and biological models, and to make model building a major focus of
the course. However, textbook writers and instructors should strive to present
models based on correct physical or biological principles.
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