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Introduction

n this age of easy access to the internet and to spreadsheets, easy-to-apply
Inumerical methods exist that are vastly superior to Simpson’s rule and the
(corrected) trapezoidal rule. Gaussian quadrature (GQ) is such a method.
What follows tells how enthusiastic Year 9 students with a physics problem
provoked a science teacher into re-discovering a mathematical idea, then
together we played with the idea.

Numerical integration is taught for the HSC using Simpson’s rule and
the trapezoidal rule. The examples used are always analytical functions
on the domain of interest; they can be well approximated by a polynomial
using a Taylor series around the midpoint of the interval. These are ‘nice’
curves. Often these examples can be integrated exactly, so convergence is
easily examined. Many problems in chemistry and physics cannot be solved
using the integration rules taught in the HSC course. In such cases the CRC
Handbook of Chemistry and Physics (Lide, 2004) is a good starting point, followed
by Abramowitz and Stegun’s (1965) Handbook of Mathematical Functions, the
NIST Handbook of Mathematical Functions (Olver, Lozier, Boisvert & Clark, 2010),
then Tuble of Integrals, Series, and Products (Gradshteyn & Ryzhik, 2007). After
that, and often much earlier, we fall back on numerical methods.

Part 1 compares the convergence of Simpson’s rule, the trapezoidal rule,
the corrected trapezoidal rule and Gaussian quadrature for three simple
problems of increasing challenge. If you just need a better tool for numerical
integration, read only Part 1. Using GQ is like using logarithms, the hard work
of calculating the values need only be done once then the results can be used
for a multitude of problems. The values needed for GQ can be downloaded
from a website, inserted into a spreadsheet, then applied to a multitude
of problems. This part ends with a description of how the method can be
extended to less ‘nice’ problems, where the height or the slope of the curve

becomes infinite at the edges of the domain.
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Part 2 shows how we (re)developed GQ for the simplest case, where the
function can be well approximated by a polynomial. This part explains the
logic of the method and shows how the abscissae and weights were found.

Part 3 shows the physics problem, which led to this work. We responded
by (re)developing the work in Part 2 and developing the delta-weighted GQ
in Part 3, which appears to be completely original. Its development is strongly

parallel to Part 2.

Weighted sum

The weighted sumor weighled averageis a usefulidea in many areas of mathematics,
science and education. For example, the average mark in a class test has equal

weights, usually given as 1. If a student is away, their weight becomes 0.
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The variance of the test, the square of its standard deviation, is also a
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Simpson’s rule is a weighted sum, with weights 1, 4, 1 on each subinterval.
The trapezoidal rule is a weighted sum, with weights 1 at the ends of each
subinterval.

In statistics and probability, the weights are often normalised so that their
sum is one.

Gaussian quadrature is a weighted sum that optimises the points and
weights used. The meaning and derivation of these values will be explored
in part 2 in more depth, but once these values are known, evaluating the
numerical integral is exactly as hard as adding up a shopping list. Compare

Table 1 with Table 5 to see the structural similarities.

Tuble 1. Adding wp a shopping list as an everyday example of a weighted sum.

— Mass Price wAbd
(kg) = w ($/kg) = f(x)
2 bananas 0.567 3.30 1.87
3 oranges 0.789 2.80 2.21
5 pears 1.234 2.50 3.09
TOTAL 7.17




A more detailed look at the methods

Simpson’s rule exactly fits a parabola to three points, so its answer is correct
for any polynomial of order 2 or lower. We start by considering a single strip
on the domain [-%, &] and fitting a parabola y = ax® + bx + ¢ through three

points at (—h’ y,,,,), (O’ yn) and (h’ y/f)'
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The area A under the curve on [—A, k] is:

A= %ahg +2ch

= <[+ 49, 0.)(20)

When considering the errors in Simpson’s rule, the third order term
about the midpoint does not contribute to the integral so Simpson’s rule
converges as the fourth power of the interval 4 between the points used. This
is demonstrated in the examples that follow

The trapezoidal rule fits the heights at the two endpoints of each strip.
When considering the errors, the trapezoidal rule converges as the square of
the interval & between the points used.

The corrected trapezoidal rule fits the heights at all of the points but needs
the slopes only at the two endpoints. It converges as the fourth power of the
interval width A.

We start by considering a single strip on the domain [—%,%] . This problem

has four variables so a cubic polynomial is needed.
y=ax’ +bx’ +ex+d

1 1, 1
3, =——ah® +—bh* —=ch+d
8 4 g
1 1, ., 1
y, =—=ah® +—bh* +=ch+d
8 4 2

The slope is then given as s = 3ax” + 2bx + ¢.
Sy = 3ah?—bh+c

m

= §ah2 +bh+c
4
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The area A under the curve on —g,g] is:
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For a set of evenly spaced points, the slope terms for all interior points
cancel. For the same number of points, the corrected trapezoidal rule has
a smaller error and is easier to program than Simpson’s rule, but the HSC
mathematics course neglects it.

Gaussian quadrature is a weighted sum where the points and the weights
given to those points have been chosen to fit the highest order polynomial
possible. The variable is changed to a standard domain of integration [-1, 1]
so the odd order polynomial terms drop out. For = points the method is exact
for a polynomial of order (27 — 1). This is explained in detail in Part 2.

b 1
[rds=52 ] reae

_ (b—a) s,
2

:@éwlf(él)

Using the same number of points, Gaussian quadrature is superior to
the numerical integration rules taught in the HSC mathematics courses.
We compare it with Simpson’s rule, the trapezoidal rule, and the corrected
trapezoidal rule for small numbers of points. The errors appear in the last
two digits. The highlighted entries for GQ have basically reached Excel’s limit
of precision. Using a spreadsheet makes numerical integration easy, but few
students are familiar with the simple task of programming a spreadsheet. (This
should be an assessed skill in Science and Mathematics, so more students will

take it seriously.)

Example 1
The integral

4

.[Qn cos(x)dx =2

2
was chosen because it is ‘nice’, varying smoothly over the chosen range, not
rising to large values and easily approximated by a polynomial, but not exactly
expressed by a polynomial of finite order. The results below compare the four
numerical integration methods evaluating this integral for small numbers of

points. The errors in the calculations appear in the last two digits shown.
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Figure 1. The cosi jon on | =

igure 1. The cosine function on | =55 |-

Table 2. Comparing methods of numerical integration for the cosine, function,

using only n points. The integral is exactly 2.

n Simpson Trap Corr. trap Gaussian
3 2.094 1.57 1.982 2.0014
5 2.0046 1.90 : 1.9989 2.00000011
7 2.00086 1.954 1.99979 2.0000000000019
9 2.00027 1.974 1.999934 2.0000000000000
11 2.00011 1.984 1.999973
17 2.000017 1.9936 1.9999959
33 2.0000010 1.9984 1.99999974
65 2.000000065 | 1.99960 1.999999984
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Figure 2. Log-log plot of the error against the number of points used, to show convergence.

Example 2

The function ¢ on [-4, 4] is less ‘nice’, varying smoothly over the domain,

but rising to large values as x approaches 4, and needing a higher order

polynomial.
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Figure 3. The exponential function on [-4 ,4].

Table 3. Comparing methods of numerical integration of €', using small numbers of points.
The integral of exp(x) on [-4,4] is 54.5798343942555.

n Simpson Trap. Corr. trap. | Gaussian

3 78 113 40 52.91

5 58 72 53.5 54.575

7 55.4 62 54.3 54.579831

9 54.85 59 54.51 54.5798343936

11 54.70 57.5 54.549 54.5798343942553
17 54.598 55.7 54.5751

33 54.5810 54.86 54.57954

65 54.57991 54.65 54.579816

Figure 4 shows the log-log plot of the error versus the number of points,

to show the different convergence. The slope of lines for Simpson’s rule and

the corrected trapezoidal rule are roughly equal. GQ converges much more

rapidly as more points are used. Again, the last GQ value shown is limited by

the finite precision arithmetic.
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Figure 4. Log-log plot of the error versus the number of points.



Example 3

Thefunction f(x)= Jr2—x? on[-r,7]isnot‘nice’. Thefunctionvariessmoothly
over the chosen range, but the slope becomes infinite as |x| approaches 7, so
it cannot be approximated by a polynomial of finite order. Away from these
problem areas, a finite polynomial is a much better approximation. Using a
smaller angle improves the convergence. The internal angle of this sector is
60°: when the radius of the circle is /6 , the pale grey area, which lies on the

domain I:—@ 5

’T} has area T.
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Figure 5. The sextant integral. The pale sector or sextant has area T, approximated by integrating under
the curve then subtracting the darker triangles.

Table 4. Comparing numerical integrals lo find pi, using small numbers of poinls. The radius is 6 .
The sextant area is 0 = 3.14159265358979

n Simpson Trap. Corr. trap. | Gaussian
3 3.1340 3 3.1443 3.14177
5 3.14093 3.105 3.14178 3.14159307
7 3.14145 3.126 3.141631 3.1415926549
9 3.141545 3.1326 3.141605 3.1415926535942
11 3.141573 3.1358 3.1415977 3.14159265358980
17 3.1415896 3.1393 3.14159343
35 3.141592459 | 3.14103 3.141592702
65 3.141592641 | 3.14145 3.141592657
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Figure 6. Log-log plot of the error versus the number of points to show the different convergence.

The examples above show that the trapezoidal rule converges more slowly
(second order) than the corrected trapezoidal rule and Simpson’s rule
(fourth order) while Gaussian quadrature converges much more quickly and
the convergence improves as more points are used. GQ owes its precision to
optimising the placement of both the points at which the function is evaluated
and the weigh given to those points. Using n points, the method exactly fits any
polynomial of order (27 — 1) or lower. Enormous effort was made throughout
the 20th century to extend Gaussian quadrature to higher orders.

We found an excellent website (Casio Computer, 2018) that gives high
(and variable) precision abscissae and weightings for a range of Gaussian
methods, including methods that allow for integrable poles at the extrema.
Part 2 derives and lists the solutions up to 13 points.

In practice, GQ is easilyimplemented on a spreadsheet. For the calculations
above, our spreadsheet used only four columns, labelled « for the abscissae
or points on the [-1, 1] domain, w for their weightings, x for the points on
the [a, b] domain, and w - f(x) for weighted functional values. Doing a new
problem added only two columns. The integral is found by summing the
w - f(x) column and scaling for the width of the domain. GQ with only a
small number of points converges to the limit of the spreadsheet’s arithmetic,
where using Simpson’s rule to get comparable precision requires hundreds of
points. Writing the program in Python is even easier.

Table 5 shows the evaluation of the numerical integral of cos(x), using
small numbers of points. The first two columns contain values that can be
downloaded from the Internet and re-used in many calculations. This GQ
calculation is no harder than the shopping list shown in Table 1. Structurally

they are almost identical.

Table 5. Evaluating the numerical integral of cos(x), using small numbers of points.

GAUSSIAN QUADRATURE
abscissae weights X w* cos(x)
—0.906179845938664 | 0.236926885056189 [-1.423423973 | 0.03479022
—0.538469310105683 | 0.478628670499366 |-0.845825614 | 0.317385143
0.000000000000000 | 0.568388388388888 | 0 0.568888889
0.538469310105683 | 0.478628670499366 | 0.845825614 0.317385143
0.906179845938664 | 0.236926885056189 |1.423423973 0.03479022
N=5 integral= 2.00000011

Why is GQ not taught? Australia seems to have forgotten GQ. Australia
needs to encourage STEM education of students and staff. Simple accurate

methods attract greater student effort.



Building on a good idea

Gauss-Legendre quadrature (as used above and developed in more detail in

Part 2) does not deal well with poles at the extrema nor with fractional powers

such as square roots where the slope becomes infinite at one or both extrema.

Gauss-Jacobi quadrature introduces weighting functions (x+1)%and (x—1)°
at these extrema. Such problems are common in physics and chemistry. GQ
can be extended for appropriate functions on the semi-infinite and infinite
domains [0, e0) and (—oo, o). Again, such problems are common in physics

and chemistry.
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